Merivesiakvaarion perustaminen

Jukka ‘Mikael’ Majuri
Sisällysluettelo

SISÄLLYSLUETTELO... 3
ALKUSANAT .. 7
JOHDANTO .. 8
OSA 1 .. 9
1. MIKÄ ON RIUTTA-AKVAARIO? ... 9
2. MILLAISIA MERIVESIÄKVAARIOITA ON OLEMASSA? 10
 KALA-AKVAARIO ... 12
 KALA-AKVAARIO JOSSA ON ELÄVÄÄ KIVEÄ 13
 PEHMYTKORALLIAKVAARIO .. 13
 KIVIKORALLIAKVAARIO ... 14
 YHDISTELMÄAKVAARIO .. 14
 BIOTOOPPIAKVAARIO .. 15
 ALHAISEN VALOMÄÄRÄN AKVAARIOT 16
 SUUREHikon VALOMÄÄRÄN AKVAARIOT 16
 SUUREN VALOMÄÄRÄN AKVAARIOT .. 16
3. ALTAAT .. 17
 ERILAISET ALLASJÄRJESTELMÄT ... 17
 Järjestelmä ilman ala-allasta .. 17
 Järjestelmä jossa on ala-allas 18
 Järjestelmä jossa on ala-allas ja refugio 18
 ALLAS JA SEN VALINTA .. 19
 JÄLUSTA ... 21
4. LÄPIVIENNIT JA YLIVUODOT .. 24
 LÄPIVIENTI POHJASSA ILMAN KAATOKULMAA 24
 LÄPIVIENTI SEINÄSSÄ ILMAN KAATOKULMA 25
 LÄPIVIENTI POHJASSA SEKÄ KAATOKULMA 25
 KIINTEÄ YLIVUOTOLAATIKKO ... 26
 IRRALLINEN YLIVUOTOLAATIKKO 27
 LÄPIVIENNIN KOKO ... 27
5. ALA-ALLAS .. 29
6. REFUGIO ... 31
7. VALAISTUS .. 32
 VALON MÄÄRÄ .. 32
 VALAISIMEN VALAISUKYKY ... 33
 VALON VÄRILÄMPÖTILA ... 34
 VALAISINTYPIT .. 34
 T5 loistevalaisimet ... 34
 ASL T5 loistevalaisimet ... 35
 Monimetallivalaisimet .. 35
 Elohopeapurkausvalaisimet ... 37
 VALAISTUKSEN KUSTANNUKSET 38
8. AKVAARION PERUSLAITTEISTO .. 39
 PUMPUT .. 39
 Vedensiirtopumput ... 39
 Virtauspumput .. 40
 Annostelupumput ... 40
 VAHHDOTIN .. 41
Hohkapuilla toimiva ... 41
Venturiin toimin min vaahdotin .. 42
Neulaventtiili (pyörä) vaahdotin ... 43
Vaahdottimen huolto ... 43
PUTKISTO .. 43
LÄMMITIN .. 46
LÄMPÖMITTARI .. 46
VEDEN OMNAISPAINON MITTAUS .. 46
Kelluvalla hydromettrillä mittaanminen 47
Viisarimalisel la hydromettrillä mittaanminen 47
Veden sähkönohtokyyyn mittaanminen 47
VESITESTIT .. 48
pH-testi .. 48
KH/Alkaliniteetti -testi ... 48
Ca -testi .. 48
Mg - testi .. 49
NO₂/NO₃ -testi ... 49
PUHDISTUSVÄLINEET .. 49

9. AKVAARION LISÄLAITTEET ... 51
KALSIUMIN LISÄYS .. 51
Kaksikompomettijauhe ... 51
Kalsiumhydroksidi eli kalkkivesi ... 51
Käsän lisääminen ... 51
Pumpun avulla lisääminen ... 52
Ilmampumpun avulla lisääminen .. 52
Kalkkivesireaktorin avulla lisääminen 52
Kalsiumkarbonaatin ja kalkkireaktorin avulla lisääminen 53
KORVAUSVEDEN LISÄYS .. 54
VEDEN PUHDISTAMINEN .. 55
Käänteisosmoosi (RO) .. 55
Ioninvaihtoyksikkö (DI) ... 56
Käänteisosmoosi- ja ioninvaihtoyksikkö 57
OTSONISAATTORI .. 57
AKTIIVIHILEN KÄYTTÖ ... 57
TIEDONKERUUN JA OHJEUUSLAITTEET 58
LUETTAVAA ... 58

OSA 2 ... 59

10. BIOLOGINEN KIERTO .. 59

TYPPIPISTOISTEN KOMPONENTTIEN HAAJOAMINEN 60
Ammoniakkivaihe ... 60
Nitrilitäivähe .. 60
Nitraattivaihe ... 60
Typitäivähe ... 61

11. KÄYNNISTYSVAIHE ... 62
LAITTEIDEN ASENNUS ... 62
SUOLAVEDEN VALMISTUS ... 62
RIUTTARAKENTEIDEN TEKEMINEN ... 63
Tukirakenteet ... 63
POHJAHIEKKA .. 64
ÄLÄTTÄN TÄYTTÄMINEN ... 64

12. ENSIMMÄINEN KUUKAUSI ... 66

13. SEURAAVAT KAKSI KUUKAUTTA ... 67
LEVÅT ERI VAIHEISSA .. 68
Piilevä ... 68
Sinilevä .. 69
Vihrelevä ja sen syöjät ... 70
Suvut Bryopsis ja Derbesia ... 70
Vihreä kalkkipitoinen levä, suku Halimeda ... 72
Suku Caulerpa ... 73
Ruskolevä ... 73
Punalevä .. 73
Punainen kalkkipitoinen levä ... 73
Zooksantelli ... 74
ENSIMMAISET OSTOKSET ... 75
14. KOLMANNENATA KUUKAUDEN ETAAPIN ... 76
15. VUOSI ALKAA TULLA TÄYTEEN ... 77
16. ALTAAN TOIMINTAAN VAIKUTTAVAT TEKIJÅT ... 78
LÅMPÖTILA ... 78
SUOLAPITOISUUS ... 79
Hydrometrillå mittaus ... 79
Kelluvå hydrometri ... 80
Visarimallinen hydrometri ... 80
Vedon såhkojohtokynyn mittaaminen ... 81
ALKALINITEETTI JA KALSIUMPITOISUUS ... 82
PH JA SIHEN VAIKUTTAVAT TEKIJÅT ... 85
Liian korkea pH .. 86
Liian matala pH .. 86
VEDENVAHDOT ... 87
VESITESTIT .. 88
MUUT TEKIJÅT .. 88
OSA 3 ... 89
17. PAKSU HIEKKAPETI ... 90
PAKSU HIEKKAPETI PÅÅKVAARIOSSA ... 90
PAKSU HIEKKAPETI ALA-ALTAASSA ... 91
PAKSU HIEKKAPETI REFUGIOSSA ... 91
18. AKKLIMAATIO ... 93
LÅMPÖTILA ... 93
SUOLAPITOISUUS JA PH ... 93
VALO ... 94
AKKLIMAATI这事KOJA ... 94
19. RUOKINTA JA LISÅRAVINTEE ... 95
KALOKEN RUOKA ... 96
SIMPUKAT .. 96
VEDESTÅ SUODATTAVA ELIÅSTO ... 96
LIKKUVAT SELKÅRANGATTOMAT ... 96
KORALLIT ... 97
Pehmytkorallit .. 97
Isopolyyppiset kivikorallit ... 97
Pienipolyyppiset kivikorallit ... 97
LISÅRAVINTEE .. 97
20. ASIAT VOIVAT MENNÅ PIELEEN ... 98
LEVÅT ... 98
Rihmalevä .. 98
Syanobakteeri eli sinilevä ... 98

Sisålyluettelos

5
Sisällysluettelo

<table>
<thead>
<tr>
<th>Sivu</th>
<th>Sisältö</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>Viitteet</td>
</tr>
<tr>
<td>164</td>
<td>Tiedonkeräystaulukko</td>
</tr>
<tr>
<td>161</td>
<td>Lyhyteitä englannista</td>
</tr>
<tr>
<td>141</td>
<td>Sanastoa</td>
</tr>
<tr>
<td>140</td>
<td>Kuvatiedot</td>
</tr>
<tr>
<td>122</td>
<td>Neitokalat</td>
</tr>
<tr>
<td>121</td>
<td>Vuokkokalat</td>
</tr>
<tr>
<td>120</td>
<td>Haukkakalat</td>
</tr>
<tr>
<td>125</td>
<td>Huulikalat</td>
</tr>
<tr>
<td>127</td>
<td>Luikerot</td>
</tr>
<tr>
<td>128</td>
<td>Tokot</td>
</tr>
<tr>
<td>130</td>
<td>Nuolikot</td>
</tr>
<tr>
<td>131</td>
<td>Kaniinkalat</td>
</tr>
<tr>
<td>131</td>
<td>Välskärit</td>
</tr>
<tr>
<td>134</td>
<td>Sääpikalat</td>
</tr>
<tr>
<td>135</td>
<td>Lossero- ja pallokalat</td>
</tr>
<tr>
<td>136</td>
<td>Rakentelua</td>
</tr>
<tr>
<td>136</td>
<td>Kalliveden syöttöläitteisto</td>
</tr>
<tr>
<td>138</td>
<td>Durson putki</td>
</tr>
<tr>
<td>139</td>
<td>Jalusta ja katto</td>
</tr>
<tr>
<td>140</td>
<td>Kuvatiedot</td>
</tr>
<tr>
<td>141</td>
<td>Sanastoa</td>
</tr>
<tr>
<td>161</td>
<td>Lyhyteitä englannista</td>
</tr>
<tr>
<td>164</td>
<td>Tiedonkeräystaulukko</td>
</tr>
<tr>
<td>165</td>
<td>Viitteet</td>
</tr>
</tbody>
</table>

21. Korallit

Pehmytkorallit ja vuokot ... 102
Kivikorallit .. 106

Selkärangattomat + muut .. 109

22. Kalat .. 112

Murteenat .. 113
Skepsionisimput .. 114
Pyöröpääet, keijukalat, kejuahvenet, pomat, pennat, meriahvenet ja saha-ahvenet 115
Kardinaleihvenet .. 116
Perhokalat .. 117
Keisarikalat .. 119
Haukkakalat .. 120
Vuokkokalat .. 121
Neitokalat .. 122
Muut koralliahvenet ... 123
Huulikalat ... 125
Luikerot ... 126
Merikokit .. 127
Tokot ... 128
Nuolikot .. 130
Kaniinkalat .. 131
Välskärit .. 131
Sääpikalat .. 134
Lossero- ja pallokalat .. 135

23. Rakentelua.. 136

Kalliveden syöttöläitteisto ... 136
Durson putki .. 138
Jalusta ja katto .. 139

Kuvatiedot .. 140
Sanastoa .. 141
Lyhyteitä englannista ... 161
Tiedonkeräystaulukko ... 164
Viitteet ... 165

Tämä kuva Aqua-Webissä Siniriutan merivesialtaasta herätti mielenkiinnon riutta-akvaarioihin

Kaikesta lukemisesta ja avusta huolimatta tunsin, että oli paljon epäselviä asioita, jotka oli ratkaistava täysin yksin ja osittain “sokkona”. Tämä sai minut miettimään josko tekemäni tiedonkeruun voisi jotenkin saada sellaiseen muotoon, että siitä olisi apua muillekin – siksi tämä pieni manuaali.

Johdanto

Akvaarioharrastus on hyvin suosittua Suomessa ja lähes kaikilla on jonkinlaista tietoa siitä joko omakohtaisena tai esim. ystävän kautta saatuna kokemuksena.

Makean veden akvaarioista löytyy suomenkielistä kirjallisuutta ja lisääpua löytyy vaikkapa www.aqua-web.org -keskustelupalstalta.

Merivesiaikvaarioiden osalta on tilanne hiukan toisenlainen. Käytettävissä oleva kirjallisuus on vieraskielistä ja siihen perehtyminen vaatii kielitaitoa ja paljon viietennäytyttä. Aqua-Webissä on kyllä merivesi -keskustelualue, josta saa neuvoja, mutta pelkällä ”kyselyperiaatteella” merivesiaikvaarioita ei voi perustaa – tarvitaan paljon luettua perustietoa.

Varsin moni makean veden harrastaja haluaisi siirtyä merivesiharrastukseen, jos olemassa olisi riittävän selväkielinen opas harrastuksen alkuun saattamiseksi. On hyvin tärkeää saada kuva siitä, mitä tämä harrastus vaatii sekä ajallisesti että rahallisesti - sekä millaisia laitteita tarvitaan.

Tässä kirjasessa on pyritty kertomaan yksinkertaisesti tärkeimmät asiat merivesiaikvaariojen perustamisesta. Viittauksia joihinkin alan tunnettihiin kirjoihin ja artikkeleihin on käytetty, joista voi sitten hakea syventävää tietoa.

Kun oivallettiin ns. elävän kiven käyttö biologisena suodattimena, ja kun saattiin vielä vaahdottomet mekaanisiksi suodattimiksi, alko harrastus olla jokaisen miehen ja naisen ulottuvilla. Harrastajamäärien kasvu myötä on tieto lisääntynyt ja tänä päivänä kotiaikvaarioissa kasvaa ja voi hyvin sellaisiakin eläimiä, joiden menestymistä akvaarioissa pidettiin täysin utopistisena ajatuksena vielä 15 vuotta sitten.

Riutta-akvaario on suljettu ekosysteemi, johon saadaan aikaan tasapaino vain erittäin hyvällä veden laadulla ja tätä kautta herkän eliöstön ylläpitämisellä. Merivesiaikvaarioiden harrastaminen vaatii huolellista suunnitelta, tiedon hankintaa ja hyvää altaan hoitoa. Kun kärsivällinen harrastaja on jaksanut harrastuksensa parissa vuoden verran, voi hän sitten nauttia kauniista ja loisteliaan värikkäistä riuttanäkymästä kotonaan.

Toivon, että kirjasssa esitetyt tiedot auttavat harrastajaa pääsemään pahimpien karikoiden yli tämän hienon ja hyvin mielenkiintoisen harrastuksen parissa.

Tällaisen tuulahduksen koralliruutusta voimme saada kotimme olohuoneeseen (Tatu Vaajalahti).
1. Mikä on riutta-akvaario?

Riutta-akvaario on ekosysteemi, joka saadaan tasapainoon hyvällä vedenlaadulla ja ns. elävän kiven käytöllä.

Pieni ryhmä kuitenkin uskoi Engiä. He huomasivat, että kun elävä kivi ensin pestiin huollettisesti pinnalla olevasta kuolevasta eliööstöstä ja pidettiin yllä hyvää vedenlaatua, saatiin biologinen suodatus käyntiin. Vei kuitenkin aikaan ennen kuin tämä metodii yleisty harrastajien keskuudessa. He ehtivät keksiä ja kokeilla moninaisia menetelmiä, jotka nykyään on jo hylätty.

Engin järjestelmää voidaan käyttää sellaisenaan (biologisen kuormituksen ollessa pientä) tai käyttää apuna mekaanista suodatusta kuten vaahdottajaa.

Kun riutta-akvaario on saavuttanut käynnistämisän jälkeisen tasapainon, voidaan sinne siirtyä erilaisia isompia eläimiä, joita ostetaan akvaarioliikkeistä. Näihin kuuluvat mm. erilaiset mikroleviä syövät kotiolot, leviä syövät kalat, merimakkarat ja pohjatiekalta detritusta (liete, hajaantunut eloperäinen aines) syövät merihat. Kun allas on täysin kypsynyt, voidaan sinne hankkia esim. simpukoita ja muita hyvin herkkä herkkä asukkaita.

Kalat näyttelevät riutta-akkaariissa vain hyvin pientä osaa kokonaisuudesta. Ne saattavat kokonsa puolesta olla eniten näkyviissä, mutta lukumääräisesti ne ovat vain murto-osaa kokonaisuudesta. Lisäksi pitämällä kalojen lukumäärän alhaisena helpotetaan altaan ekojärjestelmän vakautta selvästi, koska kalat ovat pahimpia akvaarioveden likaajia.
2. Millaisia merivesiakvaarioita on olemassa?

Suomessa voidaan tehdä pääjaottelu kahteen ryhmään eli merivesialtaisiin ja murtovesialtaisiin. Tässä kirjasessa perehdytään kuitenkin ainoastaan merivesiakvaarioihin.

Merivesiakvaariot voidaan jaotella useallakin eri tavalla. Nilsen & Fossä ovat kirjassaan Modern Coral Reef Aquarium jaotelleet ne seuraavalla tavalla:

- Kala-akvaariot
- Seura-akvaariot
- Hiekka-alueakvaariot
- Riuttarotkoakvaariot
- Luola-akvaariot
- Riutraprofileakvaariot

Näistä kolme ensimmäistä voisivat olla aloittelijalle sopivista vaihtoehtoja, vaikkakaan kala-akvaario ei oikeastaan ole riutta-akvaario.

Koska hyvin usein riutta-akvaarion kohdalla kysytään hintaa, voisi jaottelu tehdä käytettävän rahan mukaan:

- matalan budjetin järjestelmät
- keskivertobudjetin järjestelmät
- paljon rahaa vaativat järjestelmät

Tuo yllä oleva jaottelu tuntuu varmaan aika oudolta, mutta jo tässä vaiheessa on parasta mainita, että merivesiakvaario harrastuksena on huomattavasti kalliimpi kuin makeavesiakvaarioiden harrastaminen. Lisäksi se vaatii enemmän teoreettista paneutumista kuin makeavesipuoli. "Puoliksi" harrastaminen ei onnistu ja johtaa vain eliöstön ja rahojen menettämiseen.

Kokoaiskustannukset ovat usein tärkein peruste, minkä tyyppisen altaan aikoo perustaa. On muistettava, että upeat riutta-altat eivät ole koskaan halpoja ja rahanmeno on syytä varautua. Epäonnistumisten suurin syy on yritys säästää rahaa väärissä paikoissa.

Kolmas jaottelutapa voisi olla valomäärän perustuva. Tämä jaottelu vastaa hyvin pitkälle samaa kuin rahaan perustuva jaottelu.

- alhaisen valomäärän akvaariot
- suurehkon valomäärän akvaariot
- suuren valomäärän akvaariot

Valaistustarvikkeet ovat kalliita, mutta kun käyetään enemmän valoa, voidaan hankkia monipuolispempaa eliöstöä, jota varten on puolestaan hankittava erilaisia lisälaitteita kuten kalkkireaktori jne. – kustannukset silsi kasvavat.
Jaottelu voidaan tehdä myös seuraavasti:

- kala-akvaario
- kala-akvaario jossa on elävää kiveä
- pehmytkoralliakvaario
- kivikoralliakvaario
- yhdistelmäakvaario
- biotooppiakvaario

Seuraavaksi tutkitaan tarkemmin näitä kahta viimeistä ryhmittelytapaa eli allastyyppin mukaista sekä valomäärän mukaista jaottelua.

Komea siipisimppu (Juha Posio)
Jaottelu allastyyppin mukaan

Kala-akvaario

On myös muistettava, että kala-allas akvaariotyyppinä on kovin yksitoikoinen riutta-akvaario verrattuna. Ainoina kaunistuksina ovat siis pelkät kalat, jotka tosin voivat olla hyvinkin komeita ja värikkäitä.

Normaalisti syy kala-akvaarion perustamiseen on harrastajan halu hankkia sellaisia kalajoja, joita ei voi sijoittaa tyypilliseen riutta-akvaarioon, koska ne eivät ole ns. riuttaturvallisia ts. tällaiset kalat voivat syödä koralleja, toisia pieniä kalajoja tai selkärangattomia. Tällaisia erityyppisiä ei-riuttaturvallisia kalajoja voidaan sijoittaa helposti samaan altaaseen, ja näin harrastaja pääsee ihailleen todella kauhiita ja värikkäitä kalajoja.

Tällainen allastyyppi on hankintakustannuksiltaan suhteellisen halpa, koska sen toiminnan kannalta kalleimmat komponentit ovat itse allassa ja vaahdotin. Myöhemmin kalojen osuus kokonaiskustannuksissa saattaa kasvaa hyvinkin huomattavaan osaan. Valaistus voi olla suhteellisen heikko, koska altaassa ei kasva valoa tarvitsevaa eliöstöä eikä siten lisää kustannuksia.

Kala-akvaario jossa parvi pyjamakaloja
Kala-akvaario jossa on elävää kiveä

Pehmytkoralliakvaario

Kuten nimikin kertoo, sisältää tällainen allassa pehmytkoralleja. Altaassa on tyypillisesti pohjalla joko ohut kerros korallihiekkaa tai ns. syvä hiekkapeti (eng deep sand bed eli DSB). Hiekan päälle sijoitetaan elävää kiveä, ja joko pohjaan tai kiviin kiinnitetään pehmytkoralleja.

Valaistuksesta aiheutuu lisäkustannuksia, koska sen on oltava tehokasta. Lisäksi on hankittava kalkkiveden syöttöjärjestelmä, koska korallit tarvitsevat kalkkia rankansa rakentamiseen. Veden virtauksen on oltava altaassa voimakasta ja tähän tarvitaan virtauspumppuja, jotka puolestaan tuovat lisäkustannuksia. Tällainen akvaario muuttaa asuaan hyvinkin nopeasti, koska pehmytkorallit kasvavat nopeasti

Kivikoralliakvaario

Tämä akvaariotyyppi on laitteiston osalta kaikkein vaativin. Pehmytkorallialtaaseen verrattuna lisänä ovat voimakkaammat valot, kalkkireaktori ja suurempi veden kierrätys.

Altaassa kasvaa etupäässä kivikoralleja. Jos allas on kooltaan suurempi kuin 400 litraa, on korallien kalkintarve todella suuri. Kalkkiveden lisäys ei yksin riitä siitä huolehtimaan, vaan on hankittava kalkkireaktori hiilidioksidipulloineen. Valaisimina on käytettävä tehokkaita monimetallivalaisimia. Lisäksi vedenkierron olisi oltava 20 - 40 x altaan tilavuus/tunti. 400 litran altaassa vedenkiertori olisi siis 8000 -16000 litraa/tunnissa.

Yhdistelmäakvaario

Kuvassa on akvaario, joka valittiin Reefcentral.comin kuukauden altaaksi kesäkuussa 2003 (Marko Haaga).

Biotooppiaakvaario

Nilsen & Fossán Reef Secrets -kirjassa on esitetty muutamia hyvin mielenkiintoisia biotooppialtaita, jotka jäljittelevät esimerkiksi jotakin riutan läheisyydessä olevaa aluetta kuten laguunia tai merihirvipohjaa. Mikäli valoa on riittämiin, sopisi tällaiseen kasvamaan vaikkapa alla kuvassa olevia kivikoralleja: Montipora digitata, Catalaphyllia jardinei tai Nemenzophyllia turbida.

Esimerkinä biotooppialtaasta voisi olla vaikkapa Pizzavuokkoallas, joka rakennettaisiin noin 150 litran akvaarioon. Pohjalle tulisi paksu korallihiekkakerros, alle karkeampaa ja pinnalle hienompaa korallihiekkaa, muutama elävä kivi reunoille, vähän makroleväää sekä pizzavuokko, jonka kanssa vuokkoräkkä ja vuokkoravut eläisivät symbioosissa.

Väläistuksena olisi 3 kpl päivänvaloloisteputkea ja yksi sinivaloputki. Vettä puhdistaisi pieni altaaseen ripustettava vaahdotin ja vettä kierrättäisi pieni pumppu. Korvausveden mukana syötettäisiin kalkkivettä.
Jaottelu valomäärän mukaan

Alhaisen valomäärän akvaariot

Suurehkon valomäärän akvaariot

Suuren valomäärän akvaariot

Tämä akvaariojärjestelmä on kustannukseltaan korkeahko, koska valaistukseen käytettävät tehokkaat loisteputkivalaisimet (T5) ja/ta monimetallivalaisimet nostavat kustannuksia selvästi.
3. Altaat

Esimerkkinä olkoon vaikka vaahdotin. Jos arvelee vaihtavansa omistamansa 200 litran akvaarion parin vuoden kuluttua 400 litraiseen, on viisainta ostaa heti tälle suuremmalle akvaariolle soveltuvan vaahdotin. Erikoiskusten vaahdottimien hintaero on aika pieni, joten kannattaa heti alkuun sijoittaa suurempaan akvaatioon sopivaan vaahdottimeen. Tätä säästää selvästi rahaa.

Sama sääntö pätee myös moneen muuhun hankittavaan laitteeseen. Kannattaa jo alku vaiheessa käyttää hieman enemmän rahaa ja näin todennäköisesti säästää sitten tulevaisuudessa. Toisaalta, jos ajattelee, ettei ehkä parin vuoden kuluttua enää ole harrastuksen parissa, on parasta unohtaa koko riutta-akvaarioprojekti.

Erilaiset allasjärjestelmät

Kuten alussa todettiin, laitteiston kokoonpano riippuu hyvin paljon siitä, millaisen allas tyypin aikoo perustaa. Yksinkertaisimmillaan on kyse yhdestä pienestä altaasta, joka sopii pöydän reunalle. Toisena ääripäänä on ollut näin laadun palela, jolle on erillinen laite huone.

Järjestelmä ilman ala-allas

Aloittelijan ensimmäisenä halpana versiona voisi olla juuri tällainen yhden altaan järjestelmä. Tekniikaksi riittää pieni vaahdotin ja vettä kiertävää pieni kierätys-pumppu. Altaaseen on lisättävä korvausveden mukana kalkkivettä. Tämän voi hoitaa itse rakennettavalla kalkkiveden annostelijalla

Pienen altaan takaosaan voi tehdä väliseinän, jonka taakse pystyy sijoittamaan vaahdottimen ja kierätyspumppun.

Isompiakin altaita voi tietyistä rakenta samalla periaatteella, mutta altaan koon kasvaessa suurenevät myös tarvittavat liitäntälaitteet. Laitteiden piilotuminen altaaseen käy huomattavan vaikeaksi, joten niiden oikea sijoitus paikka on esimerkiksi jalustaan sijoitettu ala-allas.

Tässä nanoriutta-altassa teknikka on väliseinän takana piilossa (HillyBilly).
Isoakin akvaariota voidaan pitää menestyksellisesti ilman ala-allaista, mutta käytäntö on osoittanut, että sen olemassaolo helpottaa hoitoa (Kimmo Sukanen).

Järjestelmä jossa on ala-allas

Ala-allassa on apuakvaario, joka sijoitetaan esimerkiksi päälänsä alla olevaan kaapistoon. Ala-allas voi sijaita myös pääaltaan vieressä laitekaapissa. Joissakin tapauksissa vaahdotimet ovat myös sen verran korkeita, että ne mahduvat jalustaan. Silloin tällainen ala-allas oleva kaapin saattaa olla erittäin hyvänä ja siistiä tavaroiden "piilotuspaikka".

Ala-allaan avulla voidaan helposti hoitaa veden haitumisesta aiheutuvaa vedenpinnan korkeuden vaihteeva vedenpinnan korkeuden vaihtelun on tarkoitus siten, että pääaltaan vedenpinta pysyy korkealla samalla korkeudella koko ajan. Kun ala-allas on käytössä, pysyy pääaltaan pinta roskattomana ja siistinä, koska normaalista ylivuoto imee ala-allaaseen menevän veden juuri vedenpinnasta.

Ala-allas lisää kokonaisveden määrää ja auttaa esimerkiksi kesääikaan pitämään veden lämpötilan tasaisena. Vedenvaihtojen tekeminen ala-allaan kautta on hyvä tapa olla häiritsemättä pääaltaan elipäätöitä. Tärkeää näkökohta on tietytä myös se, että laitteita ei tarvitse sijoittaa näkyville pääaltaaseen.

Järjestelmä jossa on ala-allas ja refugio

Refugio (eng refugium) on suojapaikka pienelööstölle. Se voi olla osana ala-allaista tai kokonaan oma altaansa.

Tarkempaa tietoa löytyy täältä (sivu 31).
Allas ja sen valinta

Merivesipuolella käytetään kokonaan lasista tehtyjä altaita, vaikka niissä ole myös metallikehyksiä. Merivesi syövyttää metallia ja siksi on oltava todella tarkka puhdistusmagneetin ja puhdistettavan pinnan välissä. Merivesissä käytetään koko alla metallikehyksiä.

Akvaario kokoa mietitessä on tärkeää, että veden vaihtuminen ja siitä aiheutuvat epäonnistukset täydentävät akvaarioihin suurempia halkeamia. Doug Wotjczak perustelee, että veden vaihtuminen ja siitä aiheutuvat epäonnistukset täydentävät akvaarioihin suurempia halkeamia. Doug Wotjczak perustelee, että veden vaihtuminen ja siitä aiheutuvat epäonnistukset täydentävät akvaarioihin suurempia halkeamia.
Kuvassa on erään harrastajan ensimmäinen 200 litran akvaario. Tämän jälkeen hän on pystyttänyt 800-litraisen. Pienestäkin akvaariosta voi saada upean (Tatu Vaajalahti).

Akvaario koko riippuu määräytyistä tekijöistä:

- 60 cm pitkän altaan päälle sopii yksi monimetallivalaisin. 60 x 40 x 40 cm kokoinen alas on tilavuudeltaan noin 100 litraa. Vastaavasti 60 x 50 x 50 cm on 150 litraa.
- Jotta altaaseen saataisiin aikaan riittävä syvyyysvaikutus, olisi altaan leveyden oltava ainakin 50 cm. 120 x 50 x 50 cm (300 litraa) altaan päälle sopii 54 W T5-loisteputket tai 2 kpl monimetallivaloja.
- Seuraava moduulimitta on 160 cm, johon sopii 80 W T5-loisteputket sekä 3 kpl monimetallivaloja.

Akvaarion syvyys vaikuttaa valaistukseen. Paksu hiekkakerros vie osaltaan syvyyttä, mutta on täysin selvää, että loisteputkivalaisimia käytettäessä akvaarion syvyys ei voi oltaa suuri koska valaistuksen määrä pienenee etäisyyden neliksi ja loistetuttyt ei kykene valaisemaan syvän altaan pohjalle saakka. Seuraava *taulukko* (sivu 33) kertoo paljon.

Jos akvaarioon sijoitetaan kaloja, jotka ovat vilkkaita uimareita, on akvaarion pituus tällöin tärkeä kriteeri. Akvaarion leveyden kasvattaminen pituuden kustannuksella mahdollistaa parempien ruotturakenteiden tekemisen. Kaikkien mittojen pitäminen suurina auttaa tiettävän monien pulmien ratkaisuun, mutta tällöin päädytään helposti allaskokoon, joka on reilusti yli 500 litraa.

Huomion arvoinen asia on etulasi – suora vai kaareva? Joidenkin mielestä kaarevan etulasin läpi on vaikea katsoa ja se aiheuttaa päänsärkyä. Kannattaakin ensin käydä tutustumassa kyseisen tyypiseen akvaarioon ennen sen hankkimista.

Kannattaa miettää

Jalusta

Kun kokonaisuus tehdään siististi ja huolella, voi tekniikka olla kokonaan näkyvissä kuten tässä akvaariossa (Marko Haaga).

Jalustalle asetetaan joitakin vaatimuksia erityisesti, jos siihen sijoitetaan ala-allas ja tekniikkaa. Ensinnäkin olisi mietittävä korkeutta. Olisi tiedettävä vaahdottimen tyyppi ja sen vaatimat mitat. 60 cm korkeat metallijalustat ovat auttamattomasti liian matalia. Vaikka sinne saisikin mahtumaan kaiken, jää huoltoja varten tarvittava työskentelytila pieneksi. Kannattaa muistaa, että pumppuja, vaahdottimia yms. laitteita on huollettava aika-ajoine, jolloin ne on otettava pois jalustasta.

Vahinkojen varalta kannattaa miettiä mahdollista jalustatilaa tai sen alle sijoitettavaa ”turva-allas” eli vesitilistä kaukaloa, johon mahtuu tiety määrä vettä. Esimerkiksi vedenvaihtojen yhteydessä pieniä määriä vettä valuu ala-allas ulkopuolelle aina silloin tällöin ja kaukalo estää sen latialle pääsemisen. Tämä kaukalo on ehdoton, mikäli akvaarion alla on parkettialattia.

Sähköasioiden olisi oltava jalustan yläosasassa ja johdotukset siten, etteivät ne missään vaiheessa loju kaukalon pohjalla mahdollisesti olevassa vedessä. On muuten aika yllättävää miten monta jatkotohtoa tarvitaan – 20 kappaletta laitepistokkeita on aivan normaali määrä.
Jalustan voi ostaa valmiina, teettää tai tehdä itse. Erityisesti isompien altaiden kohdalla teetetty tai itse tehty jalusta saattaa olla hyvinkin varteennonottava vaihtoehto, koska se on myös sisutuksellinen elementti.

Yllä olevassa kuvissa on esimerkki hyvin suunnitellusta järjestelmästä, jossa kaikki laitteet sijaitsevat kolmessa eri tilassa (Mika Laitinen).
1. Oikeanpuoleisessa kaapissa on vaahdotin. Se on kooltaan niin suuri, ettei se olisi sopinut akvaarion jalustaan.

2. Vasemmanpuoleisessa kaapissa on kalkkireaktori hiilidioksidipulloineen. Ylähyllyllä on jäähdytysyksikkö, jolloin kuumimpaan aikaan ei lämpötila ole ongelma, koska jäähdytin pitää veden lämpötilan koko ajan vakiona.

Tässä on suunnitteluvaiheen kolmiulotteinen kolmiulotteinen kuva ja lopullinen toteutus. Kuten kuvasta näkyy, huollettavuuden kannalta on tehty muutos jalustaan – yksi iso aukko keskellä on parempi ratkaisu (Jukka Merimaa).

Luettavaa:
4. Läpiviennit ja ylivuodot

Altaan valinnan yhteydessä olisi mietittävä, onko pelkkä pääallas riittävä vai tulisiko hankkia ala-allas ja mahdollisesti myös refugio. Jos päädytään ala-altaaseen, on pääaltaaseen normaalisti tehtävä läpiviennit ja ylivuodot.

Veden juoksuttaminen pääaltaasta ala-altaaseen on tehtävä hallitusti. Sen on tapahduttava siten, että pääaltaan vesi valuu ala-altaaseen vain ennalta määritellyllä tavalla.

Normaalisti vesi valuu pääaltaan sisällä olevan seinämän (ylivuodon) yli tilaan, jossa on reikä (läpivienti), jonka kautta vesi pääsee ala-altaaseen. Vesi valu ylivuodon kautta samaa vauhtia, kun sitä pumpataan ala-altaasta pääaltaaseen. Vesi pumpataan AINA pääaltaasta ala-altaaseen, mikäli alaallas on pääaltaan alapuolella.

Joissakin tapauksissa ala-allas voi sijaita pääallas ylempänä. Tällöin vesi pumpataan ala-altaaseen, josta se valuu painovoiman avulla takaisin pääaltaaseen. On makuasia kutsuaanko kyseistä allasta ala- tai yläaltaaksi.

Läpiventi pohjassa ilman kaatokulmaa

Altaan jossakin nurkassa on pohjassa reikä, johon läpivientiyhde tulee. Läpiviennissä on pystyssä putki, jonka pituus määrittelee sen kuinka korkealle vesi nousee altaassa. Putken reunan yläpuolelle nouseva vesi valuu putkea pitkin ala-altaaseen.

Tällainen rakennelma ei ole hyvä akvaarioissa joissa on elävää kiveä koska jos sortuva kivikasa kaatuu putken päälle ja katkaisee sen juuresta, akvaario tyhjenee tällöin täysin vedestä (piirros Jukka Merimaa).
Läpivienti seinässä ilman kaatokulmaa

Läpivienti seinässä ilman kaatokulma

Läpivienti pohjassa sekä kaatokulma

Tässä tapauksessa on yleensä akvaarion takaseinään tehty reiä jollekin kohtaa yläreunaa ja tässä reiässä on läpivientiyhde. Yhteessä on siivilä, joka estää akvaarion eliöstön joutumisen veden mukana ala-alaaseen. Akvaarion vedenpinta on läpivienin korkeudella.

Hankalutena on se, että vedenpinnan korkeutta ei voi säädellä lainkaan. Myös siivilä voi tukkeutua helposti, joka taas johtaa altaan tulvimiseen.

Tässä kuvassa on kaksi huomauttamisen arvoista asiaa: läpivienti ilman kaatokulmaa sekä läpinäkyvä letku, johon levää helposti kasvaa. Myös metalliliitin on arvelluttava.

Tässä altaassa kulmassa on ”perinteinen kaatokulma”. Durson yläosa jätetty pois, jotta kuva olisi selvempi (piirros Jukka Merimaa).

Tällaisen kaatokulman takana voi olla myös toinen läpivientiyhde, jonka kautta paluuvesi tulee ala-alaasta takaisin päältaaseen. Samantyyppinen kaatokulma voi sijaita myös vaikkapa keskellä altaan takaseinää. Silloin on tienkin kyseessä nelämäinen pohjaan asti ylettyvä laatikko, jonka yläreunoista vesi valuut.
Läpiviennit ja ylivuodot

Tässä altaassa on keskellä oleva ”kaatokulma”. Durson yläosa jätetty pois, jotta kuva olisi selventi (piirros Jukka Merimaa).

Oli kaatokulma sitten kulmassa tai takaseinällä, vie se hiukan tilaa altaan pohjaväylän alalla. Sen etuna on kuitenkin se, että ala-veeja voi sijoittaa vaikkapa aivan seinään kiinni, koska läpivienti tulee altaan reunojen sisäpuolelta. Lisäksi akvaarion vedenpinnan korkeutta voidaan säädelä kaatokulman reunan korkeutta säätellemällä.

Kiinteä ylivuotolaatikko

Kiinteä ylivuotolaatikko jossa läpivientiyhde ja siihen liityvä Durson putki joka näkyy kuvassa (piirros Jukka Merimaa).

Läpiviennin ylivuotolaatikko

On vain ikäävää, että tällainen järjestelmä ei ole täysin varma. Veden virtaus laatikoiden välillä saattaa keskeytyä ja aiheuttaa vesivahingon.

Paljon järkevämpää on siis viedä alas lasiliikkeeseen ja teettää siellä läpivientireitit akvaarioon. Aivan samalla tavalla se reikää syntyy valmiiseen akvaarioon kuin irralliseen lasiosaankin.

Läpiviennin koko

Läpiviennin yhteen koon määrittelee ala-altaseen pumpaavan pumpun eli pääkiertopumpun pumpaama vesimäärä. Toisin sanoen pääaltaasta on valuttava vähintään sama määrä vettä ala-altaseen, kuin mitä pääpumppu pääaltaseen pumpaa.

Todellisen virtausmäärän saa selville vasta, kun järjestelmä on käytössä ja siksi on olisi pystyttävä arvioimaan etukäteen.

Jos mitoittaa läpiviennin koon pumpun teoreettisen tilavuusvirran mukaan, pysytään varmalla puolella.

Läpivienvälineen ja ala-altaseen vievien putkien ylimittimäärä saattaa säästää monelta harmilta – se saattaa olla ehkä hiukan kalliimpaa, mutta varmastikin äänetyöltää. Durson putki auttaa alaaan ja ei poistaa melkein kaikkilta veden valumisen aiheuttamat äänet. Se ei poista turbulenssivirtauksesta aiheutuvia putkeja, jotka puolestaan aiheuttavat suolaisia vedenroiskeja, jotka ”likaavat” laitteita yms.

Läpiviennille löytyy laskentakaavoja, mutta usein kokemusperäinen tiedot saattaa olla kuitenkin parasta. Kysy siis kaverilta. Eräänä esimerkkinä voidaan kertoa, että Eheim 1060:n pumpaavan pumpunn vesimäärä on hieman vähemmän tuloksena veden pumppumäärä on pääaltaseen määränä 32 mm läpiviennin läpi, kun läpivienväli sijaitsee altaan takaseinässä olevassa ylivuotolaatikossa ja läpivienväli on vedenpinnan tasolla. Tämä on kahden erilaisen altaan (400 l ja 800 l) kokemusperäinen tiedot, mutta mitään varmmutta ei ole siitä, että se toimisi jossakin muussa altaassa. Pääpumppun virtausmäärää voidaan tietysti keinotekoisesti pienentää esimerkiksi kuristamalla virtausta venttiilin avulla ja näin säädellä pumpattavaa vesimäärää.

Kuva Marko Haaga
5. Ala-allas

Koska ala-allas on piilossa jalustassa, voi se olla vaikkapa muovinen, mutta usein sekin on valmistettu lasista. Ala-altaan kokoon vaikuttaa muutama seikka. Ensinnäkin, tuleeko siihen refugio? Toiseksi, millaisia laitteita sinne aiotaan laittaa?

Refugio ”syö” ala-altasta yhden osan. Jos ala-altaseen sijoitetaan ”sisäpuolisia” laitteita, tarvitaan isompiaallas. Eli jos ala-altaseen laitetaan vaikkapa vaahdotin, kalkkireaktori, kalkkivesireaktori ja pääpumppu, on alaalta sen kokoinen, että ne kaikki sinne sopivat. Jos taas laitteet sijoitetaan ala-altaan ulkopuolelle, voi se vastaavasti olla pienempi.

Kaikki edellä mainitut laitteet voivat olla joko alalta sisä- tai ulkopuolella (valmistajasta riippuen). Siksi suunnitteluhaiheessa olisi mietittävä millaisia laitteita aikoo hankkia ja miten ne sijoitetaan.

Yleisesti ottaen ala-altaseen on ainakin kolme osastoa. Ensimmäinen osasto on se, jonne vesi valuu pääaltaasta. Sinne sijoitetaan yleensä myös vaahdotin, jos refugio on keskimääräisessä osastossa. Keskimäärinen osasto on siis joko refugio tai laiteosasto. Viimeinen osasto on se, josta vesi pumpataan takaisin pääaltaaseen. Tässä osastossa hoidetaan myös korvausveden määrän ”tarkkailu”. Tässä viimeisessä osastossa ei suositella pidettäväksi vaahdotinta, koska se vaahdottaisi myös refugioista kiertoon lähteväpineliöstön, jonka tulisi päästä pääaltaaseen hengissä.

Kukin harrastaja määrittelee ala-altalleen ”muodon” käytettävien laitteiden ja muiden seikkojen perusteella. ”Muoto” tarkoittaa sekä fyysistä muotoa ja kokoa että laitteiden aiheuttamia vaatimuksia. Joillakin saattaa olla hyvin monimuutkaisia ala-altasaratkaisuja ja toisilla taas hyvin pelkistettyjä sovelluksia.

Yksi yhteinen vaatimus kaikille ala-altaille kuitenkin on: pumppujen pysähtyessä kaiken pääaltaasta valuvan veden on mahdollista valita ala-altaseen. Tämä vesimäääräänhan on se, joka pääsee valumaan ylivuodon ylitse. Tähän määrrään vaikuttaa se, onko ylivuodon yläreuna suora vai kampamainen. Kammallisesta versiosta valuu ala-altaseen enemmän vettä kuin suorareunaisesta versiosta.

Kammalla varustetusta ylivuodosta veden pinta pääsee laskeutumaan alemmaksi kuin suorareunaisesta ylivuodosta (kuva Rambi).
Vastaavasti on huolehdittava siitä, että pääaltaasta ala-altaaseen menevän putken tukkeutuessa (esim. jos kotilo tukki sen) ala-alaan pumppukamion vesi mahtuu pääaltaaseen ilman sen tulvimista. Toisena ratkaisuvaihtoehtona on toinen putki, josta vesi pääsee valumaan pääaltaaseen juuri ennen kuin se tulvii pääaltaan reunojen ylitse.

Jos pääpumppu sijaitsee ala-altana ulkopuolella, on siihen tehtävä läpiventti. Ulkopuolinen pumppu tulee tähdelliseksi, jos altaassa on paljon muita sisäpuolelle sijoitettuja laitteita.

Käytettävien laitteiden valinnassa kannattaa huomioida niiden tuottama lämpö, joka lämmittää akvaariumon vettä. Eri valmistajien laitteissa on suuriakin eroja. Ylimääräinen kuluerä tulee siitäkin, jos joutuu vaihtamaan pumpun esim. vähemmän sähköä vievään ja samalla vähemmän vettä lämmittävään malliin. Ongelma ei normaalisti synny talviaikana, mutta kesällä veden lämpötila saattaa kuumimpina päivinä nousta helposti yli 30ºC.
6. Refugio

Mikäli refugiota ei sijoiteta ala-altaan yhteyteen, on sille tehtävä oma altaansa. Sen voi sijoittaa ala-
altaan viereen tai sen yläpuolella.

Refugio on suojapaikka pienelöstölle. On paljon erityisesti pohjakehassakin elävää eliöstöä, joka vaatii
rauhallisen kasvupaikan, jollainen päällassa puolestaan ei ole. Pääaltaessa saattaa olle ollut esimerkki
(mandariinikala, haukkakala jne.), jotka syövät elävää kiveä ja pohjalta eliöstöä ja täten saattavat
jotkut lajit kadota kokonaan.

Refugiossa ei ole eliöstöä syöviä petoja, jotka ne saavat lisääntyä rauhassa. Vedenkierron mukana
niitä kulkeutuu päällassa syötäväksi.

Refugiolla on toinen tehtävä. Siinä kasvatetaan makroleviä, jotka kasvaessaan pystyvät sitomaan
itseensa vedestä nitraattia ja muita vettä likaavia komponentteja. Kun makroleviä poistetaan
refugiosta, poistuu näitä ravinteita niiden mukana.

Paras sijainti refugiolle on päällassa yläpuolella. Tällöin vesi valu refugiosta päällassa
painovoiman avulla ja veden mukana siirtyvää eliöstöä pysyy hengissä paremmin kun jos ne menisivät
pumpun läpi.

Erittäin laitekaappi, jossa on ylähyllyllä
refugio, keskihyllyllä korvausvesisaavi ja ala-
hyllyllä kolmiosastoinen ala-allas.

Seinän takana on ala-allas, josta vesi valu
ala-altaan oikeassa reunassa olevaan osastoon. Keskihyllyllä on vaahdotin ja lämmintä.

Refugioista vesi valu omalla painolla takaisin
pääaltaan. Veden paluuputkessa on haara refugioon, jon
ne menevän veden määrää säädellään ventti-

letkut (läpinäkyvät) menevät seinän läpi
lattianrajassa olevan aukon kautta.

Refugion valaistus voi olla hyvinkin vaihtelevaa. Refugiossa ei välttämättä tarvitse olla voimakas
valaistus, ainoastaan riittävä makrolevin kasvun. Jotkut harrastajat käyttävät ns. käänteistä valaistus-
järjestelmää. Tämä tarkoittaa sitä, että refugiossa on valo päällä oisinsa, kun päällassa on pimeänä ja
päinvastoin. Tätä refugiossa tapahtuu oisinsa valaistuksen ansiosta yhteyttämistä, joten koko järjesty-
elmä toimii tasaisemmin, koska pH ei pääse laskemaan yön aikana yhtä paljon kuin refugion ollessa
pimeänä.
7. Valaistus

Nilsen & Fossá muistuttavat myös, että kun akvaarion elöstöle on saavutettu oikea valaistus, jossa ne viihtyvät, sitä ei saa muuttaa. Ne tottuvat biologisesti siihen, jolloin symbioottinen levä stabiloituu ja korallit alkavat kasvaa valonlähdettä kohden. Jos näiden korallien paikkoja jatkuvasti vaihdellaan, elöstö ei koskaan asetu "paikoilleen".

Valon määrä

Luonnon koralliriutoilla valon määrä vaihtee päivän aikana valtavasti. Keski-päivällä vedenpinnalta voidaan mitata 120 000 luxia. Vastaavasti akvaariossa esim. lyhytpolyyppiset kivikorallit vaativat veden pinnalla olevan 20 000 – 40 000 luxia. Tämä vastaa riuttalla jotakuinkin 5 metrin syvyydessä olevaa valomäärää.

Riutta-akvaarioissa eräs tapa arvioida valomäärää on verrata wattien ja litrojen suhdetta. Suuren valomäärän altaassa pitäisi valoa olla 2 - 2,5 W/litra. Suurehkon valomäärän arvo on välillä 0,75 - 1,5 W/litra.

Monimetallivalaisimien tapauksessa ehkä parempi laskentatapa on laskea valontarve syvyyden mukaan. Kun tiedetään, että yksi valaisin valaisee 60 x 60 cm kokkisen alueen, wattimäärät suurehkon valontarpeen altaissa ovat tällöin:

- 175 W 50 cm syvään altaaseen
- 250 W 60 cm syvään altaaseen
- 400 W 70 cm ja sitä syvempiin altaisiin.

Suuren valomäärän altaissa saatetaan tarvita 400 W 50 cm syvään altaaseen.

Yllä olevan mukaisesti saadaan esimerkiksi seuraavaa:

- 120 x 60 x 60 cm allas (400 litraa) tarvitsee suurehkon valaistuksen mukaisesti 2 kpl 250 W monimetallivalaisimia.
- Suuren valontarpeen altaisiin tarvitaan (400 l) altaaseen 2 kpl 400 W valaisimia.

Jos yllä olevan mukainen allas olisi valaistava T5 loisteputkivalaisimilla, tarvittaisiin suurehkolla valomäärällä 9 kpl 54 W putkia ja suurella valomäärällä 15 kpl samaisia putkia. Ne eivät mahtuisi altaan päälle.
Valaisimen valaisukyky

Valon määrä vähenee etäisyyden neliössä. Edellä olevasta käy hyvin selville se, että akvaarion syvyydellä on selvä vaikutus valon tarpeeseen. On huomioitava myös, että valon korkeudella vedenpinnasta on sama vaikutus. Mitä lähempänä vedenpintaa valo sijaitsee, sitä enemmän pääsee valoa akvaarion pohjalle.

![Valaisimien valaisukyky](image)

Valaisimien valaisukyky eri syvyyksiin, kun tarvitaan voimakas valaistus.

Valaisinta ei tosin voida sijoittaa aivan vedenpinnan lähelle, koska vesiroiskeet saattavat rikkoa polttimon, joka kuumenee voimakkaasti valon ollessa päällä. Altaan helppo huollettavuus on myös huomioitava: on pystyttävä työntää altaan ilman, että polttaa sen valaisimeen.

Heijastimien osuus on todella suuri. Hyvänlaatuinen heijastin saattaa parantaa draamaattisesti valaisukykyä. On myös muistettava pitää heijastin ja valaisimen mahdollinen suojalasi puhtaana suolaroisesta, jotta valaisimesta saadaan irti kaikki sen antama valomäärä.

![Heijastimien vaikutus](image)

Tatu Vaajalahti mittasi valon määrää altaassa (2 x 250 W) ja sovitti sen päivän-tasaajalla vaikuttavaan valomäärään ja siten vastaavat ”veden syvyyden meressä”. Pohjainkellalla olevaan arvoon vaikuttaa heijastuminen etulasista.
Valon värilämpötila

Valon värilämpötila ilmoitetaan Kelvineinä (K). Mitä korkeampi värilämpötila on, sitä kylmempää (sinisempää) se on sävyltään. Vastaavasti matalien värilämpötilojen värit ovat lämpimimpiä oransseja ja punaisia.

Auringonvalon värilämpötila on noin 5 800 K. Päivänvalo on sekoitus suoraa auringon valoa ja taivaan heijastamaa sinistä valoa, ja jopa 30 000 K:n lukemat (säästä ja ajankohdasta riippuen) ovat mahdollisia. Kaikkein lähimpänä luonnollista riuttava-aineksesta on 10 000 K:n värilämpötila. Jos haluttaa enemmän sinistä valoa eli matkitaan riutauksiin syvempiä alueita, on värilämpötila oltava noin 20 000 K.

Valaisimia siis valitaan värilämpötilaltaan 10 000 – 20 000 Kelvinin poltin. Jos valaisimia on useampi, kannattaa ehkä yhteen ottaa eri värilämpötilaa oleva poltin. Muista, että 20 000 K on hyvin sininen. 10 000 K on turvallinen valinta, mutta jo 13 000 K stimuloi korallit kasvattamaan selvästi enemmän sinisen suuntaisia värvivaihtoehtoja.

Valaisintyyppit

Suomessa on käytettävissä oikeastaan vain muutama erilainen vaihtoehto.

- T5 loistevalaisimet
- ASL T5 loistevalaisimet
- Monimetallivalaisimet
- Elohopeapurkausvalaisimet

T5 loistevalaisimet

Nämä uudentyyppiset Ø16 mm loisteputket ovat korvanneet aiemmin käytössä olevat Ø26 mm loisteputket, koska niiden teho/putkussuhde on parempi. Lisäksi niitä mahtuu useampi akvaarion päälle.

On muistettava, että niiden tuottama valomäärä on sen verran alhainen, etteivät ne sovi mataliin altaiisiin, joissa kasvatetaan pehmytkoralleja (katso edellisen sivun esimerkki).

T5 valoa voidaan käyttää myös ns. sinivaloina tai lisävaloina monimetallivalojen rinnalla. Nämä ovat kaikkein tärkeimmät sovelluskohteet. Akvaariokäyttöön teholtaan parhaiten sopivia putkia ovat:

<table>
<thead>
<tr>
<th>Teho</th>
<th>Putken pituus (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 W</td>
<td>560</td>
</tr>
<tr>
<td>39 W</td>
<td>850</td>
</tr>
<tr>
<td>54 W</td>
<td>1150</td>
</tr>
<tr>
<td>80 W</td>
<td>1500</td>
</tr>
</tbody>
</table>

Valaisinrungon pituus riippuu valaisimen valmistajasta. Yleensä ne ovat vain vähän pittempiä kuin loisteputket. Esim. 54 W valaisinrungo on tyyppillisesti 1200 mm pituinen.

Kannattaa muistaa, että loisteputkat eivät tuo esiin veden välkehdintää, koska valo ei lähde niistä pistemäisinä kuten monimetallivalaisimista.

Loisteputkivalaisimien yksikköhintaa on suhteellisen alhainen, mutta koska niitä tarvitaan monta, saavutettava etu jää vähäisiksi.
ASL T5 loistevalaisimet

Nämä valaisimet ovat vieläkin kompaktimmassa muodossa kuin edellä mainitut T5 valaisimet. ASL T5 loisteputki on taivutettu U-muotoon, jolloin se on puolta lyhyempi kuin vastaava suora T5 putki.

<table>
<thead>
<tr>
<th>Teho</th>
<th>Koko (p x l x k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 18 W</td>
<td>280 x 180 x 60 mm</td>
</tr>
<tr>
<td>2 x 24 W</td>
<td>382 x 180 x 60 mm</td>
</tr>
<tr>
<td>2 x 36 W</td>
<td>485 x 180 x 60 mm</td>
</tr>
<tr>
<td>2 x 55 W</td>
<td>562 x 180 x 60 mm</td>
</tr>
</tbody>
</table>

Lisäksi on valaisimia, jotka sijoitetaan "seisomaan" altaan reunojen varaan. Ne voidaan kääntää pystyyn huoltotoimenpiteiden ajaksi.

Näille valaisimille löytyy seuraavia kokoja:

<table>
<thead>
<tr>
<th>Teho</th>
<th>Altaan pituus (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 18 W</td>
<td>530</td>
</tr>
<tr>
<td>2 x 24 W</td>
<td>640</td>
</tr>
<tr>
<td>2 x 55 W</td>
<td>940</td>
</tr>
<tr>
<td>2 x 36 + 2 x 55 W</td>
<td>1250</td>
</tr>
<tr>
<td>4 x 55 W</td>
<td>1550</td>
</tr>
</tbody>
</table>

Monimetallivalaisimet

Näitä valaisimia valmistetaan seuraavantyyppisillä polttimoilla:
- Yksikantainen E40
- Yksikantainen E27
- Kaksikantaisia polttimoita.

Kuvassa vasemmalla näkyy E27 kantainen poltimo, joka on kuin suuri hehkulamppu sekä putkimainen E40 poltin. Oikealla kuvassa on Iguzzinin valaisin, johon sopii HQI-E27 poltin.

Kansikantaisella polttimolla varustettu valaisin on ehkä yleisin, koska sen poltin on huomattavasti pienempi kuin E40 poltin. Koska poltin on iso, tulee heijastimestakin iso ja samalla myös itse valaisimesta. Akvaarioihin tarkoitettujen polttimoiden kantojen erilaiset nimitykset. Niitä ovat:

<table>
<thead>
<tr>
<th>Teho</th>
<th>Kanta</th>
<th>Pituus (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQI-TS 70 W</td>
<td>RX7s</td>
<td>114,2</td>
</tr>
<tr>
<td>HQI-TS 150 W</td>
<td>RX7s-24</td>
<td>132</td>
</tr>
<tr>
<td>HQI-TS 250 W</td>
<td>FC2</td>
<td>163</td>
</tr>
<tr>
<td>HQI-TS 400 W</td>
<td>FC2</td>
<td>206</td>
</tr>
</tbody>
</table>

Kuten taulukosta näkyy, kaikki ovat eripituisia, joten niitä ei voi sekoittaa keskenään – tarvitsee tietää vain teho ja että kyseessä on kaksipäinen poltin tyyppiä TS. Poikkeus löytyy tietyistä USasta jossa samalle teholle löytyy kahta pituutta.

Kaksipäisiä polttimeoita löytyy 150W, 250W, 400 W (ja 1000 W) tehoisina. Niitä myydään tyyppillä HQI-TS.
On oltava tarkkana ja huomioitava, että HQI-TS tarkoittaa kvartsi (HQI) teknologiaan kuuluvaa poltinta ja HCI-TS tarkoittaa keramiikka (HCl) teknologiaan kuuluvaa poltinta eli HQI valaisimessa ei voi käyttää HCI polttimoita.

Kuvissa erilaisia Reggianin valmistamia normaaliin sisustuskäyttöön tarkoitettuja 70 W ja 150 W monimetallivalaisimia, joissa käytetään HQI-TS polttimoita.

Akvaarioita varten valmistetaan hyvin paljon erilaisia valaisimia. Kuvassa Giesemannin siro ja kaunis monimetallivalaisin, jossa on myös sinivaloloisteputket.

Polttimon vaihdon yhteydessä (joka on suoritettava ainakin kerran vuodessa) olisi äkillinen valovoimakkuuden nousu kompensoitava joko nostamalla valaisimia ylemmäksi tai lyhentämällä valaistusjaksoa.

Elohopeapurkausvalaisimet

Nämä valaisimet ovat hyvin samantyyppisiä kuin monimetallivalaisimet, mutta polttimona on elohopeapurkauspolttimo. Kyseiset valaisimet eivät tällä hetkellä oikein sopi valaistukseen, koska markkinoilta ei löydy värilämpötilalta sopivia polttimoita. Niiden väri on yleensä liian keltaista

Kuvapari näyttää saman korallin värit ostohetkellä (oikealla) ja kun se on ollut 1,5 kuukautta akvaarioissa värilämpötilaltaan 13.000 K kirkkaiden valojen alla.
Valkaisuksen kustannukset

Kuten moneen kertaan on jo mainittu, valaistus on iso osa kokonaiskustannuksista erityisesti, jos halutaan kasvattaa kivikoralleja. Myös sähkökulutukseen ja vuosittaisiin polttimoiden vaihtoon mene-vä raha on huomioharvoinen asia. Omakotitalossa valaistuksen tuottama lämpö voi roikkuva tehdastekoineen valaisin. Näitä saa eri tehoina ja eri tavalla varusteltuina. Tyyppillisesti ne ovat moduulimittaisia eli esim. 600 mm, 900 mm, 1200 mm, 1600 mm ja 2100 mm – hiukan valmistajasta riippuen. Erilaisia variaatioita ovat:

- pelkä monimetalli
- monimetalli + loistepultket
- monimetalli + loistepultket + kuvalo
- monimetalli + loistepultket + kuvalo + ohjaustoiminnot

Tämä esimerkki tuo kuitenkin esiin ongelman tulevaisuutta ajatellen. Ajatellaanpa, että kyseessä on alas mitoiltaan 120 x 60 x 60 cm eli 400 litraa. Suurehkolle valomäärälle riittäisi valaisimiksi 2 x 250 W, mutta voimakkalle valolle olisi oltava 2 x 400 W. Mutta entä jos tulevaisuudessa haluaisi hankkia isomman altaan? Miten tällainen valaisin kävisi siihen?

Ajatellaan, että uusi altaan on valaistaa noin 800 l. Jos haluaa ostaa toisen samanlaisen valaisimen li-säksi, on altaan oltava 240 cm pitkä. Isomassa altaassa tuleeksi onjuuri valaisimia usein juuri pituus. Toisaalta alas voi olla sivusuunnassaakin leveämpi ja mahdollisesti ehkä hiukan korkeampi – vaikkapa mitoiltaan 160 x 80 x 70 cm eli 896 litraa. Tähän ei saa lisättyä toista 120 cm pituista valaisinta vaan 40 cm pituisen. Pelkä 2 x 400 W ja 120 cm pitkä alkuperäinen valaisin saattaisi selviä sellaisenaan, mikäli altaan päätyosissa pituiset piilotettavat putkeja. Jos vaihtoehtona valaisin olisi oltava ensimmäiseen altaaseen 2 kpl 1 x 400 W valaisimia, joiden kummankin putki on 49 cm ja sitten isompaan uuteen altaaseen vielä yhden lisää. 2 x 400 W valaisimen hinta olisi 814 € ja 2 kpl 1 x 400 W on yhteensä 910 €.

Näin kannattaa ehkä toimia, jos uskoo tulevaisuudessa pääätvänä isompaan altaaseen. Asia on, että huomioharvoinen valaisimispuhdistus saattaa heikentää valaisimen erityisesti. Tällöin alkuperäisen valaisimen pituus olisi mitä odottaa ja sovittaa. Esimerkiksi alkuperäinen valaisimen pituus on 120 cm, koska 54 W:n T5 putken pituus on 115 cm. Aivan pienitehoisia valaisiloja ei kuvata hankkia. Erilliset sinivalot voivat olla ehkä paras ratkaisu, joten tärkeää on valmistautua vaihtelemään. Tämä voi vähentää valaisimen hintaa yhteensä 910 €.

Huolellinen miettiminen heti alkuvaiheessa voi säästä remodelaation rahat myöhemmässä vaiheessa. Tässä on suunnitellut valaisimesta, mutta sama asia pätee myös esimerkiksi vaahdottimien ja pumppeihin.
8. Akvaarion peruslaitteisto

Akvaario ei tule toimeen pelkällä vedellä, elävällä kivellä ja valolla. Siellä olevan veden on virrattava, akvaariota on yleensä mekaanisesti puhdistettava, haihtuva vesi korvattava, kalkkia lisättävä, jne. Näihin tarkoituksiin tarvitaan erilaisia laitteita, joista kerrotaan tässä kappaleessa.

Pumput

Akvaariossa on käytössä normaalisti kolmenlaisia pumppuja:

- vedensiirtopumput
- virtauspumput
- annostelupumput

Vedensiirtopumput

Yleensä nämä pumput kuluttavan suhteellisen paljon sähköä, joka puolestaan siirtyy lämpönä veteen erityisesti, jos pumpu on upotettuna veteen. Jotkut harrastajat käyttävät näitä pumppuja myös veden virtauspumppuina, mutta siihen ne eivät ole parhaita mahdollista juuri niiden vettä lämmittävän efektit vuoksi.
Virtauspumput

Annostelupumput

Vaahdotin

Lee Chin Eng kehitti ’luonnollisen menetelmän’ riutta-akvaarion pitämiseksi, joka toimii aivan sellaisenaan, jos akvaariossa oleva kuormitus on pientä. Tämä tarkoittaa sitä, ettei akvaariossa saisi olla suuria kaloksi, ja pieniäkin vain vähän. Melkein jokainen harrastaja haluaa kuitenkin pitää useita kaloksi, joten ’luonnollisen menetelmän’ lisäksi tarvitaan myös mekaaninen puhdistuskeino eli vaahdotin.

Makeavesiakvaarioissa vettä pyritään pitämään kristallinkirkkaana isoilla mekaanisilla suodattimilla ja runsailla vedenvaihoilla, jolloin biologiset saastuttavat komponentit vähenevät. Riutta-akvaarioissa taas vettä pyritään pitämään kristallinpuhtaana ehdotamalla vedestä mahdollisimman nopeasti paljon biologisesti saastuttavia komponentteja ennen kuin ne aiheuttavat veden pilaantumista. Sille tasoille ei vedenvaihoilla päästä. Poistamatka jääneen liian hoitaa elävä kivi biologisesti.

Kuten juuri edellä kerrottiin, proteiinimolekyyllt tarttuvat vesi-vesi rajapintaan. Samoin proteiininaivesi kerääntyy oheeksii kerroksessa pääaltaan veden pinnalle. Jos pinnasta tulee ylivuoto johdetaan suoraan vaahdottimeen, saadaan vaahdotin toimimaan mutta virheellisesti. Tämä vaahdotin tyypit voidaan jakaa toimintatavaksi kolmeen kastiin:

- hohkapuilla toimiva
- venturitoiminen
- neulaventtiilitoiminen

Hohkapuilla toimiva

Akvaarion peruslaitteisto

Vasemmalla Deltecin AP850, joka on altaan ulkopuolelle sijoitettava malli. Oikeanpuoleinen osa Tunzen 3130, joka sijoitetaan riippumaan joko alta-altaan tai pääaltaan reunan sisäpuolelle
Neulaventtiili (pyörä) vaahdotin

Tämä vaahdotintyyppi vaatii erittäin tehokkaan pumpun, jotta suuri ilmamäärä saadaan imettyä vaahdottimeen. Neulapyörä pilkkoo tehokkaasti vedessä olevia ilmakuplia vieläkin pienemmiksi, joten lopputuloksena on erittäin pieniä ilmakuplia.

Kuvassa Aquamedic shorty - vaahdotin

Vaahdottimen huolto

On tärkeää puhdistaa säännöllisin väliajoin vaahdottimen nousuputken yläosa, koska rasva-aineekset estävät vaahdon muodostumisen. Rasva tulee ruoan akvaarioveteen ja kertyy myös vaahdottimen nousuputkeen heikentäen lopulta sen toimintaa.

Vaahdotin tulisi liottaa osiin purettuna puolen vuoden välein etukätevästi. Tarkastele vaahdottimen toimintaa ennen ja jälkeen täydellisen puhdistamisen – yllätyt.

Putkisto

Jos käytössä ei ole ala-allas, ei ole putkistoakaan, joka puolestaan helpottaa asioita. Putkia voi tietysti tarvita, mikäli rakentelee altaan sisäisen vedenkierrätysjärjestelmän eli yhdedellä tai kahdella pumpulla kierrätetään vettä altaassa siten, että vesi puhaltuu ulos useista eri suuttimista. Saattaa kuulostaa hyvältä, mutta putket ja suuttimet syövät pumpun tehona hyvin paljon, ja toisaalta pari pientä virtauspumppua saattaa tulla halvemmaksi ja tehokkaammaksi ratkaisuksi.

Kun käytössä on ala-allas, tarvitaan putket, joita pitkin vesi liikkuu alttaiden välillä. Putket voivat olla jäykkä tai taipuisia ja yleensä valmistettu PVC -muovista. Letkujen tulisi olla läpinäkyvät. Läpinäkyvään putkeen kasvaa levää, joka tukki lettunen jonkin ajan kuluttua. Letkut ovat hyviä sikäli, että ne ovat taipuisuutensa vuoksi ehkä helpompi asentaa, mutta toisaalta jäykät putket ovat siistimmät ja pysyvät paremmin paikoillaan. Letkuiissa ei tarvitse käyttää 90° tai 45° kulmia ja tulevat siksi hiukan halvemmiksi.

Erilaisia liimattavia PVC-osia.

Hyvä esimerkki venttiilin käytöstä on ala-altaan yhteydessä oleva ulkopuolinen päätumpu. Pumpun kummallakin puolella on oltava venttiili, jotta itse pumpu voidaan irrottaa puhdistusta varten. Pumpun impuolella oleva venttiili estää alaaltaassa olevan veden valumisen laittale ja painepuolella pääakvaarioon menevän putken tyhjentymisen laittale.

PVC-osat ovat huomattavan kalliita, joten huolellinen suunnittelu on tärkeää. Myös väärrässä paikassa säästääminen voi tulla kalliiksi. On muistettava, että osat liimataan yhteen ja niiden purkaminen onnistuu vain sahalla.
Alla on esitetty yksi ratkaisumalli järjestelmästä, jossa vesivahinkojen vaara on minimoitu.

Sininen putki on ylivuodon kautta ala-altaseen menevä putki. **Punainen putki** on takaisin ala-altasta pumpattava vesi, josta osa kiertää refugion kautta. **Keltainen putki** on varaputki, jota pitkin vesi virtaa jos "sininen" putki tukkeutuu jostakin syystä. Refugion saadaan irrotettua kierrosta helposti sulkemalla sinne menevä venttiili.

Putkistoa rakennettaessa tulisi ensin tehdä ns. kylmäkasaaminen ja tarkistaa hyvin huolellisesti, että kaikki tarvittavat asiat on huomioitu. Sitten suoritetaan osien HUOLELLINEN liimaaminen toisiinsa. On sanomattakin selvää, että kirstysliitokset löystyvät jossakin vaiheessa, joten ne on syytää unohtaa. Erilaiset letkuliittimet ovat vihoviimeisia merivesiakvaariossa. Liimattavissakin liitoksissa saa onnitella itseään, jos saa järjestelmän vuotamottomaksi ensimmäisellä yritystä.

Äärimmäisen tärkeää on tutkia ne järjestelmän kohdat, joihin voi syntyä lappoilmiö. Esimerkiksi ala-altan paluuputki on sellainen, jonka olisi syytä olla vain korkeintaan 1 cm pääaltaan pinnantason alapuolella. Mikäli se on 10 cm pinnan alapuolella, valuu vastaava määrä vettä sähkökatkojen yhteydessä ala-altaseen eikä todennäköisesti mahdu sinne. Jotkut antavat neuvon, että tehdään reikää tai useampi tähän paluuputkeen juuri vedenpinnan alapuolella, jotta lappo katkeaisi vedenpinnan laskiessa. Aikaa myöten nämä reiät kuitenkin tukkeutuvat levänkasvusta yms. johtuen.
Lämmitin

Akvaarioon riittää yksikin lämmitin, mutta rikkoontumisen varalta on parempi olla kaksi. Shimekin nyrkkisäännön 11 mukaan lämmittimen tehon olisi oltava noin 1.25 W/litra, eli 400 litraanen altaassa tulisi olla 500 W lämmitin. Kahden lämmittimen yhteistehon olisi oltava tietysti tuo 500 W.

Lämpömittari

Veden ominaispainon mitaus

Merivedessä on suolaan ja sen ominaispaino on erilainen kuin makealla vedellä. Myös lämpötila vaikuttaa ominaispainoon. Ominaispainoa ei voida mitata suoraan, mutta on välineitä joiden avulla se voidaan havainnoida:

- hydrometrillä
- ominaispainomittarilla
- veden sähköntohtokyydy mitataan

Ominaispainon tulisi olla välillä 1.022 – 1.024 (S = 33 – 36) 25 °C lämpötilassa. On tärkeää seurata riittävän usein akvaarioveden ominaispainoa, koska ilman seurantaa arvo saattaa laskea liikaa. Syitä laskuun on monia: vaahdotin poistaa elementtejä vedestä, vesi vähenee järjestelmästä pumppujen tai vaahdottimien puhdistuksen yhteydessä tai vaikka eliöstöä akklimoitaessa (sopeutettaessa) ja
sitten tämä kadonnut vesi korvataan makealla vedellä, joten ominaispaino laskee. Suolapitoisuuden laskiessa alkaa esiintyä mm. sinilevän liikakasvua.

Kelluvalla hydrometrillä mitaaminen

Hydrometri on lasinen mittalaite, joka laitetaan kellumaan veteen. Se on kalibroitu toimimaan 25 °C lämpötilassa ja muissa lämpötiloisissa saadut arvot ovat väärät. Hydrometrin kelluessa vedessä luetaan se lukema, joka on vedenpinnan tasolla. Yleensä mitta-asteikossa on kohdassa 1.023 eriäväinen raita, joten lukema on helppo nähdä kuinka lähellä oikeaa "teoreettista" arvoa ollaan.

Mittaus olisi syytä tehdä aamulla ennen valojen syttymistä, koska todennäköisesti siihen aikaan veden lämpötila on tuo 25 °C. Katso lisää täältä (sivu 80)

Viisarimallisella hydrometrillä mitaaminen

Tämä on muovinen läpinäkyvä "laatikko", jossa on viisari ja laatikon kylkeen on merkitty asteikko. Laatikkoon otetaan määrittelyllä korkeudelle asti vettä, jolloin viisari nousee veden nostamana ja arvo saadaan luettua. On erittäin tärkeää suorittaa mittaus ainakin kahdesti, jotta varmistetaan saadusta lukemasta, koska vedessä saattaa olla ilmakupla, joka nostaa viisaria liian ylös. Tällä mittarilla on helppo tehdä lukemavirhe. Toisaalta mittari on siitä kätevä, ettei tarvitse miettiä veden lämpötilaa, koska mittari huomioi sen automaattisesti. Katso lisää täältä (sivu 80)

Veden sähköjohtokyvyn mittaaminen

Vesitestit

Jotta harrastaja pystyisi seuramaan tärkeitä veden parametreja, on hänen hankittava testejä, joiden avulla hän pystyy päättelemään akvaarion tilan. Kaikkein tärkeimmät seurattavat parametrit ovat veden pH ja karbonaattikovuus (KH), mutta yleisesti tehdään seuraavat testit:

- pH-testi
- KH/Alk. -testi
- Ca -testi
- Mg -testi
- NO₂/NO₃

pH-testi

pH voidaan testata tähän tarkoitukseen suunnitelluilla ns. tippatesteillä, mutta niillä saadut tulokset eivät ole kovin tarkkoja (ast eikä 0.5 yksikön välein). Lisäksi tippateillelillä nähdään vain senhetkinen arvo.

Katso lisää täältä (sivu 85)

KH/Alkaliniteetti -testi

Katso lisää täältä (sivu 82).

Ca -testi

Korallit ja muut kakkirunkoiset eliöt tarvitsevat kalsiumia (Ca) runkonsa ja kuorensa kasvattamiseen. Vedessä olevan kalsiumin määrian tulisi olla mahdollisimman lähellä meriveden arvoa, joka on noin 420 ppm.

Kalsiumia voidaan lisätä veteen kalkkivesireaktorilla, kalkkireaktorilla tai lisäämällä kaksikomponenttista jauhetta (kalsiumia ja puskurointiainetta) veteen.
Kalsiumin mittaamiseksi on olemassa oma testinsä ja on hyvin tärkeää valita oikea, koska eri testejä vertailtaessa on todettu hyvin suuria heittoja eri testien välillä. Salifertin on todettu antavan kaikkein luotettavimpia arvoja. Katso lisää täältä (sivu 82).

Mg - testi

Magnesium (Mg) vaikuttaa kokonais alkaliniteettiin. Jos magnesiumarvot ovat liian alhaiset, hiipuvat kalsium- ja alkaliniteettivarvot myös alaspaan. Silloin kalsiumarvo on alhaalla ja pH-arvo vaihtelee tavallista suuremmalla välillä. Magnesiumarvon tulisi olla välillä 1250–1350 mg/l.

NO₂/NO₃ -testi

Nitriitti NO₂ ja nitraatti NO₃ testejä tehdään akvaarion käynnistyksen yhteydessä ja niillä tarkistetaan milloin kypsymisvaihe on päättynyt. Nämä testejä voidaan tehdä koeluntoisesti silloin tällöin ja erityisesti sellaisissa tapauksissa, kun altaaseen ilmestyy esim. jokin leväbuumi tai vastaava ongelma. Nitritin ja/tai nitraatin korkeat arvot kertovat siitä, että jokin kuolee ja mätännee altaassa.

Puhdistusvälineet

Akvaariota varten hankitaan omat välineet ja pidetään erillään muista vastaavista välineistä. Akvaarion lasien ulkopintojen puhdistuksessa tulee myös käyttää vain puhdasta vettä. Lasi puhdistuu yllättävän helposti myös kuivalla mikrokuituilla.

Hankintalistalla on seuraavat välineet: puhdistusmagneetti, puhdistusraappa, tiskiharja, pulloharja, kynsiharja, kertakäyttöhansikkaita, kasvipihdit ja etikka.

Elävää kiveä ei tulisi sijoittaa liian lähelle sivulaseja, jos haluaa pitää ne puhtana, sillä puhdistusmagneetin on sovittava liikkumaan lasin ja elävän kiven välillä.

Tiskiharja tai vastaava on hyvä saumojen puhdistamiseen. Silikonisauman ja lasin rajapintaan jää aina hiukan levää ja sen poistamiseen on tiskiharja oiva apuväline.

Pulloharjaa tarvitaan esimerkiksi vaahdottomen puhdistuksessa.

Etikkaa tarvitaan perusteelliseen puhdistamiseen, jolloin laitteita liotetaan etikkavedessä vähintään vuorokauden verran. Etikka liuottaa esimerkiksi kaikki kalkkitahrat pois. Etikka on ehdoton väline pumppujen puhdistuksessa.

Lyhyitä kertakäyttöhanskoja on hyvä käyttää, kun kiinnittää fragmentteja elävään kiveen (altaan ulkopuolella). Fragmentin säilyminen elossa paraneee huomattavasti, jos käytetään hanskoja. Hanskat rikkoontuvat todella helpposti, koska elävää kivessä on paljon teräviä "piikkejä".

Kasvipihejä tarvitaan vaikka merivesiakvaarioista ei juuri kasveja löydy. Pihdeillä on helppo käänää vaikkapa kotilo oikein päin ilman, että tarvitsee laittaa käsiään vesineen. Lisäksi niillä voi nostella pudonneita koralleja takaisin paikoilleen.
9. Akvaarion lisälaitteet

Edellä on esitetty ne laitteet, joilla akvaario saadaan toimimaan. Tässä luvussa kerrotaan lisälaitteista, joita voidaan käyttää valinnaisesti apuna. Nämä eivät siis ole pakollisia, mutta jos esimerkiksi kalkkivesireaktoria ei käytä, on tarvittava kalsium lisättävä jollain muulla tavalla.

Kalsiumin lisäys

Kuten kalsiumtestiä käsittelevän kappalleen yhteydessä kerrottiin, tarvitset pehmyt- ja kivikorallit sekä kalkkikuoriset eläimiä kalkia kasvamiseen. Ne ottavat sitä akvaarioveteen, jolloin veden kalkki pitoisuus alenee, joten kalsiumia on siis lisättävä veteen. Lisäystapoja on muutama:

- kaksikomponenttijauheena
- kalsiumhydroksidin avulla
- kalsiumkarbonaatin avulla

Kaksikomponenttijauhe

Kalsiumhydroksidi eli kalkkivesi

Kun kalsiumhydroksidia lisätään veteen, saadaan ns. kalkkivettä (kalkwasser). Tämän sekoitussuhde on 1,6 g jauhetta 1 litraan vettä. 10 grammalla saadaan 5 - 6 litraa kalsiumilla kyllästettyä liuosta, jonka pH on 12,6. Käytä muovista läpinäkyvää korkillista astiaa. Lisää kalsiumhydroksidi veteen, sulje korkki ja ravista huolellisesti kunnes liuos on kuin maitoa. Anna liuoksen seistä niin kauan, että valkoinen kerros on astian pohjalla ja kirkas neste pinnalla. Kaada kirkkas liuos toiseen astiaan ja sulje korkki. Piripintaan täytettyä tämä liuos on tuoretta noin viikon verran. Korkin auki pitäminen aiheuttaa sen, että ilman hiilidioksidi reagoi liuosensa kanssa ja plaa hiljalleen liuosena.

Liuoksen lisääminen akvaarioon voidaan tehdä usealla tavalla.

Käsin lisääminen

Liuosta voidaan lisätä akvaarioveteen käsin, mutta sen on tapahduttava t o d e l l a hitaasti. Liian nopeasti kaatamalla liuos ei ehdi liueta veteen, vaan tiivistyy rakaiseena altaan pohjalle. Parempi tapa on käyttää esim. tippaletkua, jonka avulla liuos tippuu akvaarioveteen hitaasti.
Pumpun avulla lisääminen

Letkupumppu on erinomainen tähän tarkoitukseen, koska sillä saadaan annostelu suoritettua halutulla nopeudella. Ikävä kyllä tämä on myös melko kallis ratkaisu.

Ilmapumpun avulla lisääminen

Tähän tarkoitukseen tarvitaan lasinen tai muovinen kanisteri, jossa on kuminen korkki. Korkin läpi laitetaan ohut putki tai letku, joka ulottuu astian pohjalle saakka. Korkkiin tehdään reikä myös ilmaletkuun.

Kalkkivesireaktorin avulla lisääminen

Edellä esitetyissä tavoissa tehtiin valmis liuos, joka sitten lisättiin akvaarioveteen.

Yleisesti alaaltaan käytetään mikrokytkintä, joka tunnistaa vedenpinnan korkeuden ja tarvittaessa käynnistää pumpun pumpaamaan vettä korvausvesiajautiitut kalkkireaktoriin ja samoin katkaisee pumpaamisen, kun oikea vedenkorkeus on jälleen saavutettu. Tämä järjestelmä on erinomainen hyvä, koska kalsiumhydroksidimassa täytyy vaihtaa vain 2-3 viikon välein. Korvausvesiajautiitut yleensä täytetään paljon useammin.

Korvausveden pumpaus kalkkivesireaktorin voidaan hoitaa myös ilmapumppun avulla, saman periaatteen mukaan kuin edellisessä kohdassa on kerrottu. Kalkkivesireaktoriin käyttössä on yksi erittäin hyvä puoli: korvausvedessä olevat epäpuhtaudet jäävät kalsiumhydroksidimassan (koska se ei koskaan täysin liukene se ei ole erittäin hyväälaatuista) ja poistuvat, kun reaktorisäiliö pestään täytön yhteydessä. Huonona puolenä voidaan mainita se, että jos kalkkivettä ei annostella...
riittävän pieninä määrinä siten, että kaikki liukenee veteen heti, silloin saostuu osa siitä osittain pumppuihin ja myös muille pinnoille.

Kalsiumin lisäys kalkkiveden avulla nostaa akvaarioveden pH:ta ja samalla laskee karbonaattikovuutta eli puskurointikykyä.

Kalkiumkarbonaatin ja kalkkireaktorin avulla lisääminen

Kalkkireaktorin toimintaperiaatteena on liuottaa korallimurskaa akvaarioveteen. Kalkkireaktorissa on säiliö, joka sisältää korallimurskaa. Pumppu kierrättää vettä reaktorin sisäluoteessa. Reaktoriin johdetaan kokoajan hiilidioksidia (CO₂) pieni määrä ja se laskee korallimurskan pH:ta niin paljon, että murskaa liukenee veteen. Tätä reaktorissa syntyvää kalkkivettä (pH 6,5) tiputetaan sitten jatkuvasti pieniä määriä akvaarioveteen.

Kalkkin lisäys kalkkireaktorin avulla laskee akvaarioveden pH:ta, mutta samalla nostaa karbonaattikovuutta eli puskurointikykyä.

Hyvänä puolena on se, että kalkkireaktorista tuleva kalkki ei saostu pumppuihin kuten kahdes- sa muussa tapauksessa. Kalkkireaktorivienti on liian nopea ja/tai liiallinen lisäys, koska kalsiumhydroksidi kiteytyy pumpun roottoriin ja putkistoihin erityisesti, jos pH-arvo on lähellä 8.5. Kalkkireaktoria käytettäessä näin ei käy.

Kalkkireaktoria kannattaa käyttää, jos akvaarioissa on paljon kivikorallia eikä kalkkivelisireaktorista tuleva kalkkivesi riitä kalkkin lisäyksen. Kalkkivesireaktorilla voi syöttää kalkkivettä akvaarioon vain saman verran kuin vettä haihtuu järjestelmästä eikä se aina riitä. Kun allaskoko ylitää 400 litraa, kannattaa jo harkita kalkkireaktorin ottamista käyttöön.
Korvausveden lisäys

Automaattisen korvausvesisäiliön toimintaperiaatteet on sellainen, että se tunnistaa vedenpinnan laskun ja sen seurauksena pumppaa makeaa vettä altaaseen kunnes vedenpinta on jälleen oikealla korkeudella. Tämä voidaan tehdä usealla eri tavalla.

Vedenpinnan korkeus voidaan tunnistaa joko mikrokytkimen tai kelluvan uimurin avulla. Pumppaus voidaan tehdä pumpulla tai ilmapumpun avulla. Alla on esitetty muutama sovellustapa.

Sandersilta löytyy järjestelmä, jossa on vedenpinnan korkeutta vartioiva mikrokytkin sekä 240 V pistorasiaan laitettava "pistorasia". Tähän "pistorasiaa" kytketään vedenpinnan laskuun. Kun vedenpinta laskee, kytkee tunnistin virran "pistorasiaan" ja pumppu käynnistyy. Pistorasiaan on mahdollista laittaa viive pumppauksen aloituskerralle, jotta hetkelliset vedenpinnan laskut eivät käynnistäisi pumppua.

Vastaavasti "pistorasia" voi käynnistää ilmapumpun, joka pumppaa korvausvettä ilmatiivistä korvausvesisäiliöistä aivan kuten ratkaisussa, jossa pumpataan kalkkivettä (sivu 136).

Akvaarion lisälaitteet
tai kalkkivesireaktorin kautta. Tässä ratkaisussa kalkkivesireaktoriin vedensyöttö korvauksvedellä tapahtuu erinomaisen tasaisesti ja juuri oikealla nopeudella.

Veden puhdistaminen

Riutta-akvaarion toimivuuden yksi tärkeimmistä tekijöistä on veden laatu eli mahdollisimman puhdas vesi. Sekä tehty suolavesi että korvauksvesi olisi puhdistetettava. Vaikka onkin totuttu siihen, että vesihanasta tuleva vesi on juomakelpoinen, sellaisenaan, ei se tarkoita sitä, että se on sopivaa merivesiakvaarioon.

Vesi- laitoksella puhdistettu vesi sisältää erilaisia kemikaalijäämiä ja tavallisesta kaivosta otetun vesi humuspitoisina ainesosina. On muistettava myös se, että putkistoihin käänteisosmoosin ja ne saattavat lähteä liikkeelle esimerkiksi paineisiksi saatelemana. Ei koskaan tiedä millaisen likopommin saattaa saada vaikka keskuskuljessa.

Vettä voidaan puhdistaa järkevästi muutamalla eri tavalla:

- käänteisosmoosilla
- ionisointisuodatuksella
- edellisten yhdistelmällä

Käänteisosmoosi (RO)

Käänteisosmoosialaitteita on myytävänä hyvin erilaisia ja kannattaa miettiä millaisen hankkii. Yhtenä kriteerinä voidaan pitää tuottokkykyä eli silta, kuinka monta litraa puhdistetta vettä syntyy vuorokaudessa. Toisena kriteerinä voidaan pitää sitä,

Kuvassa on Rowan SL30 käänteisosmoosilaite. Siinä on ensin aktiivihilisuosodinpatruuna ja sitten RO- yksikkö.

Ioninvaihtoyksikkö (DI)

Kuvassa on ioninvaihtosuodatin, jossa katodi- ja anodiysiköt ovat erillisissä sylinterissä.
Käänteisosmoosi- ja ioninvaihtoyksikkö

Kun kaksi edellistä järjestelmää yhdistetään ja niiden eteen laitetaan hiilipatruuna poistamaan orgaanisia komponentteja, saadaan järjestelmä, joka puhdistaa vettä todella tehokkaasti. Hiilisuodatin myös pidentää sen jäljessä olevien yksiköiden käyttöikää huomattavasti.

Kuvassa 4-vaiheinen RO/DI-yksikkö, jossa on esisuodatuspatruuna, hiilipatruuna, RO-yksikkö ja ns. mixed bed DI-yksikkö.
Markkinoilta löytyy jopa 7-osaisia yksiköitä.

Aloittavan harrastajan yksi suurimmista kiusauksista on jättää vedenpuhdistusyksikkö hankkimatta, koska rahaa tarvitaan muuihin ”tärkeämpin” laitteisiin. Alussa tämä asia ei ehkä aiheutta ongelmia, mutta joka vedenvaihdon tai korvausveden lisäydessä lisätään altaaseen likaavia komponentteja. Ne jäävät altaaseen ja tulevat myöhemmässä vaiheessa mahdollisesti aiheuttamaan ongelmia. Kun puhdistusyksikkö sitten hommataan, ei se enää auta poistamaan aikaisemmin altaaseen joutuneita epäpuhtauksia.

Otsonisaattori

Otsonisaattoreita käytetään yleisesti makean veden puolella. Myös merivesipuolella sitä käytettiin 80-luvulta alkaen, mutta nykyisin katsotaan, ettei se enää kuulu tarpeellisiin tarvikkeisiin. Otsonisaattori lisää vaahdon tasaista tuottoa vaahdotimessa, johon otsonikaasua syötetään. Sen johdosta akvaariovedestä tulee kristallinkirkasta, mutta kaasu saa aikaan myös todella tukahduttavaa, jos sitä syötetään liikaa.

Otsonisaattori toimii hyvin, jos käytössä on kala-akvaario, mutta riutta-akvaarion yhteydessä se ”puhdistaa” vedestä myös hyödylliset eliöstöt ja bakteerit, joita biologinen suodatus (elävä kivi) tarvitsee.
Randy Holmes-Farley ja Ronald L. Shimek eivät suosittele otsonisaattorin käyttöä.

Aktiivihiilen käyttö

Osa harrastajista liottaa pieneen pussiin laitettua aktiivihiiltä jatkuvasti joko alallaassa tai pääallaassa. Toiset käyttävät pientä mekaanista suodatinta, jonka sisällä on aktiivihiiltä. Aktiivihiilen tarkoituksena on poistaa vedestä orgaanisia komponentteja, jotka aiheuttavat veden kellertymisen ja samalla myös estävät valon tunkeutumisen veteen.

Tiedonkeruu ja ohjauslaitteet

Akvaarion toimintaa seuraamaan ja ohjaamaan voidaan valjastaa erilaisia järjestelmiä. Ne voivat esim. ohjata valojen toimintaa syttyttämällä valot tietystä järjestyksessä auringonnousuun matkinaan, päiväsaikan avulla voidaan satunnaisesti vähentää valonmäärää pilvien liikkeilta jäljittelemään, ja illalla puolestaan matkitaan auringonlaskuun ja yöllä tietysti kuun valuaisua sen oikean kierron ja valomäärän mukaisesti.

Järjestelmä kerää tietoa myös lämpötilasta, pH-arvoista yms. Nämä tiedot voidaan siirtää tavalliselle tietokoneelle.

Luettavaa

Artikkeli **Strategia toimivaan riutta-akvaarioon** löytyy osoitteesta:

Englanninkielentaitoisille löytyy paljon luettavaa erilaisten artikkeleiden muodossa seuraavista Online-nettilehdistä:

www.Advancedaquarist.com
www.Reefkeeping.com

Biologinen kierto

Typpipitoisten komponenttien hajoaminen

Typpikierto on tapahtuma, jossa biologisen jätteen ainesosat muuttuvat bakteeritoiminnan ansiosta myrkyllisistä aineksista harmittomiksi yhdisteiksi. Kunnolla kyseessä akvaarioissa tämä prosessi tapahtuu luonnollisena bakteeritoimintana akvaarion eri osissa elävissä bakteerikannoissa.

Akvaarion perustamisvaiheessa on tämä typpikierto “käynnistettävä”. Hajoamisprosessi tapahtuu neljässä vaiheessa:

- Ammoniakkivaihe
- Nitriittivaihe
- Nitraattivaihe
- Typpivaihe

Ammoniakkivaihe

Tässä vaiheessa hajoavat aminohapot muuttuvat epäorganisisksi komponenteiksi, joissa ei ole hiiltä. Hiilen kuluttaa tavallisesti heterotrofinen bakteeri, joka kuuluu sukun Bacterium eli se muuttaa orgaaniset komponentit epäorganisiskiksi. Lopputulosena ovat ammoniakki ja orgaaniset hapot.

Nitriittivaihe

Tässä hajoamisvaiheessa ammoniakki hapetuu nitriitiksi (NO₂). Tapahtuman suorittavat Nitrosomonas, Nitrosospira, Nitrosoccus ja Nitrosolobus bakteerit hapettamalla ammoniakin. Varmasti on muitakin bakteereita suorittamassa tätä tehtävää, koska tiedetään, että aminohapot voivat muuttua suoraan nitriitiksi ja nitraatiksi.

Nitriitti (NO₂) on vain hiukan vähemmän myrkyllistä kuin ammoniakki. Täydellinen typpikierron läpipäyntä akvaario ei saisi koskaan sisältää nitriittiä.

Nitriitti- ja nitraattivaiheen prosessiin vaikuttaa lämpötila, pH ja veden hapen määrä. Mitä korkeampi lämpötila (max 30 °C) ja pH, sitä paremmin nämä typpikierron vaiheet tapahtuvat.

Nitraattivaihe

Tässä hajoamisvaiheessa nitriitti (NO₂) hapetuu nitraatiksi (NO₃). Tapahtuman suorittavat mm. Nitrobacter, Nitrospira, Nitrocystis ja Nitrosococcus suvun bakteerit.

Nitraatti (NO₃) on suhteellisen harmonit yhdiste. Se pyrkii kuitenkin kerääntymään riutta-akvaarioon, jos sitä ei ole rakenteellisesti tehty oikein. Kalat sietävät suhteell-
Biologinen kierto

lisäksi hyvin korkeita nitraattiarvoja, mutta useimmat korallit eivät. Nitraatti on hyvä kasvilannoite, joten sen kertyminen akvaarioon johtaa helposti leväongelmiin.

Yhtenä hyvänä keinona hallita nitraattipiiriä ovat vedenvaihdot (kuten makeavesipuolella tehdään), joilla laimennetaan vedessä olevaa nitraattimääriä. Riutta-akvaarioilla on kuitenkin käytössä paljon parempi ja luonnollisempi keino pitää nitraattipitoisuus kurissa – nimittäin bakteerit.

Täyden typpikieron läpikäyneessä akvaarioissa nitraattitason tulisi olla pyöreä nolla. 5 ppm (mg/l) ja sitä suuremmat arvot voivat jo heikentää korallien terveyttä ja lisätä levän kasvua. On tosin olemassa joitakin korallilajeja, jotka viihtyvät hiukan koholla olevissa nitraattiarvoissa, mutta ne kuuluvat vähemmistöön.

Typivaihe

Oikein perustettussa riutta-akvaarioissa nitraatti muuttuu erikoisbakteereiden ansiossa typpikaasuksi, joka nousee kuplina veden pinnalle ja siitä kautta huoneilmaan.

Jos typpikierro on läpikäynyt tämän vaiheen, on tärkeää jättää akvaarioiin vedenvaihdon manuaaliin ja seuraavaa helposti haitataan. Tämän viimeisen vaiheen onnistumiseen tarvitaan perustettua riutta-akvaarioa, jossa nämä viimeisen vaiheen hoitavat bakteerit elävät. Nämä ovat Micrococcus, Denitrobacillas, Pseudomonas ja Bacillus bakteereita. Typpivaihe onnistuu helposti ja akvaarioveteen joutunut jätteen on pois solmittava akvaarioiin ilman, että on tehty vedenvaihtoja tai käytetty laitteita, jolla jätte olisi poistettu.

Kun akvaarioissa on riittävästi eläviä kiveä ja sen apuna valkuaisainevaahdotin sekä hyvä vedenvaihto, nitraattikertymiä ei pääse syntymään. Jos vaahdotin puuttuu (ja kuormitus on kohtalaisia), saattaa seuraautena olla paha leväongelma, joka johtuu siis nitraatin kerääntymisestä järjestelmään.

Ammoniakkivaiheessa voi syntyä värikkäitä aineosia kuten esim. fenolin johdannaisia, jotka voivat antaa akvaariovedelle kellertävän värin. Tämä sävy saadaan poistettua kunnolla oikeastaan vain aktiivihiihtisuodatuksen avulla.

Doug Wotjczakin suomennettu artikkeli ‘Suodatoksen perusteet’ käsittelee myös biologista suodatusta ja se löytyy osoitteesta:

11. Käynnistysvaihe

Jatkossa kerrotaan kuitenkin kaikkein yleisin tapa eli käynnistämisen siten, että pohjahiekaa ja kaikki elävät kivi laitetaan kerralla akvaarioon.

Laitteiden asennus

Suolaveden valmistus

Suolana käytetään tähän tarkoitukseen valmistettua hyvälaatuista erikoissuolaa, jota saa ostettua hyvin varustetuista akvaarioliikeistä. Tavallinen merisuola tai ruokasuola ei missään tavassa helpottele akvaarioissa veden kirkastumista ennen kuin pääsee asettelemaan elävää kiveä.

Veden puhtauttua ei voi liiaksi painottaa, joten muistin virkistämiseksi voisi asian lukaista uudemman kerran tältä (sivu 55).
Käynnistysvaihe

Riuttarakenteiden tekeminen

Harrastajan tulisi nähdä mielessään miltä hänen akvaarionsa tulee näyttämään vuoden kuluttua eli olisi tehtävä suunnitelmat rakenteista riittävän aikaisin, jotta altaan muoto ja mitat tulee huomioitua jo altaan hankintavaiheessa. Kun riutan muodon on sisäistänyt itselleen, jäävät käynnistämisen jälkeiset kivien uudelleen-järjestelyt vähäisiksi.

Jos rakennetta alkaa miettiä vasta täytön yhteydessä ja tekee sen "tehdään se nyt näin" -periaatteella, voi olla varma, ettei eliö tule viihtymään hyvin. Tämä johtuu siitä, että sitä tullaan häiritsemään elävän kiven uudelleensirtelyn vuoksi.

Sikäli on oltava selvää, että täysin tyydyttävää lopputulosta ei saada ensi yrittämällä, mutta mitä vähemmän uudelleenjärjestelyjä, sitä parempi.

Tukirakenteet

PVC- muovista rakennettu ”räkki”, johon pujotetaan elävää kiveä. Putket ovat Ø12 mm samoin kuin kivi- ja poran terä.

Erityisesti pienten akvaarioiden suunnittelu on tärkeää, sillä niihin ei voi tehdä rakenteita kovin monella tavalla. On myös etukäteen mietittävä, mitä eliöitä sinne on tulossa. Lopputulokseltaan pieni akvaario voi olla yhtä kaunis ja näyttävä kuin isokin (mutta paljon halvempi).

Pohjahiekka

Korallihiekka altaan pohjalla luo mielikuvan hiekkavyöhykkeestä, josta nousee riuttaseinämä. Korallihiekka menestyneen korallihiekkakerroksen rakentaminen on suosittu ja antaa koralleiden kiitospappiin. On harrastajia ja asiantuntijoita, jotka suosittelevat huolellista ja nopeataan pohjahiekkakerroksen rakentamista.

Suomessa on vähän kokemuksia kvartsihiekkaperästä käytöstä, mutta sen verran on tullut tukea muille hiekkaperistä. Kun normaalisti esim. 10 cm paksussa korallihiekkaperässä elää elävää elävää elävää elävää elävää, on kvartsihiekkaperässä kaikki elävää elävää elävää elävää elävää. Kun normaalisti esim. 10 cm paksussa kvartsihiekkaperässä elää elävää elävää elävää elävää elävää, on kvartsihiekkaperässä kaikki elävää elävää elävää elävää elävää.

Altaan täyttäminen

Altaaseen kaadetaan vettä siten, että hiekkamateriaalit pääsevät haluttuun määrään. Kun vettä on kaada altaaseen, suunnitellaan sitten elävää elävää elävää elävää elävää. Kun vettä on kymmenkunta senttiä hiekkapinnan yläpuolella, alaa elävää elävää elävää elävää elävää, jotta niitä elävää elävää elävää elävää elävää kärsi.

Välillä kannattaa pitää taukoja ja tutkia elävää elävää elävää elävää elävää, jotta asetelmien suunnitelma onnistuu. Tässä vaiheessa muutosten tekoo on vielä helppoa erityisesti pohjarakennusten osalta.

Kun maapallo on kunnostettu paikoillaan, käynnistetään alas haluttu korkeuteen asti, ja käynnistetään vettä ja pumput.
Käynnistysvaihe

Pari päivää vanha akvaario ja sama 13 kuukautta myöhemmin.

Lopputulos on hyvin kaukana siitä, miltä akvaario tulee näyttämään vuoden kuluttua. Kyseessä on lasiastia, joka on täytetty kivellä, ja siltähän se tässä vaiheessa näyttäakin.

Tästä eteenpäin alkaa odottelu. Se vaatii harrastajalta kärsvällisyttä. Kuitenkin tulevaisuuden kannalta tulee pidätä työä kaikista kiiruhtamisen kiusauksista kunnes alas on valmis utakin uutta vaihetta varten. Tässä harrastuksessa ei ole olemassa oikotietä onneen.

Seuraavissa kappaleissa kerrotaan siitä, mitä akvaariossa tapahtuu ja millaisia leväväheita se käy lävitse. Harrastaja voi itse vaikuttaa lyhentävästi näihin vaiheisiin. Esimerkiksi korvausveden laatu vaikuttaa suoraan siihen, kuinka pitkään esimerkiksi rihamalevää esiintyy akvaariossa.

8 kuukautta käynnistämisestä. Akvaario irti seinästä ja pelit seinillä – tulee lisää katsomiskulmia
12. Ensimmäinen kuukausi

Kun haluttu akvaariomainema on valmis, alkaa siis odottelu. Monille harrastajille tämä on piinan aikaa, koska he eivät millään miltä tuuleta odotella altaan kypsynä vaan haluaisivat ostaa ensimmäiset kalat tai selkärangattomat akvaarioonsa heti.

Tämä on usein hyvin kohtalokasta, koska eliöt voivat saada nitriittimyrkytyksen biologisen toiminnan käynnistymisen yhteydessä: nitriittipitoisuus voi nousua hyvin korkeaksi, jopa 8 mg:aan litrassa. Kaloille sallittava raja on 0,05 mg/l.

13. Seuraavat kaksi kuukautta

Seuraavien kuukausien tapahtumia on esitetty yllä olevassa kaaviossa hyvin yleisellä tasolla. Kukin akvaario on yksilönsä ja sen kypsyminen riippuu hyvin monista erilaisista asioista. Tällaisia ovat mm. käytetty vesi, vaahdotin, elävä kivi ja mahdollisesti muut rakentamiseen käytetyt rakennusaineet.

Kypsyessään akvaario käy läpi useita erilaisia levä vaiheita, jotka on esitetty kaaviossa. Aikapalkin värit muuttuvat kypsymisen edetessä.

Keltainen väri kertoo ajasta, jolloin typpikierto on loppumassa ja bakteerikanta on syntyynyt. Siinä aikana esintyy lyhyen ajan myös sinilevää.

Vaaleansininen väri kertoo ajaksosta, jolloin altaaseen voidaan laittaa ensimmäiset korallit ja selkärangattomat. Tämä on myös vaihe, jossa biologinen tasapaino alkaa hiljalleen löytyä.

Tummansininen kertoo vaiheesta, jossa akvaario on kypsymänyt ja sinne voidaan laittaa kaikkein vaativimmat eliöistä kuten esim. simukat.
Levät eri vaiheissa

määrän muutos tai veden likaantuminen voi aiheuttaa piilevän kasvua, koska akvaariossa on kuitenkin olemassa aina tietty määrä piitä

Piilevää lisääntyy epäseksuaaliseksi huimalla nopeudella. Akvaario saattaa olla puhdas ammalla ja illalla on joka paikka piilevän maton peitossa. Piilevää on yleensä ongelma vain käynnistyksen jälkeisinä viikoin, joten ei ole syytä tittää estää sen kasvua tuossa vaiheessa. Mutta, jos sitä esiintyy myöhemmin, ei sen esiintymisen aikana saa laittaa uusia eläimiä akvaarioon.

Sinilevä

Eräs sinilevälaji elää symbioosissa sienien kanssa. Siksi monet sienistä ovat kirkkaana vihreässä. Levä tuottaa yhteyttä eläimille ravintoaineita sitoutumisensa pohjalle jäävään kalsiumhydroksidimassaan.

Sinilevän lisääntymistä epäseksuaaliseksi nopeasti. Plenistä fragmenteista voi kasvaa iso levä, joka kasvaa nopeasti akvaarioon, kun piilevää on kadonnut. Tämä kytkentä voi aiheuttaa也开始在...
Seuraavat kaksi kuukautta

Oletettavasti yleisin syy lienee kuitenkin ravintoaineiden kertyminen akvaarioon, joka aiheuttaa biologisen epätasapainon. Leivien lisääntymisellä on selvä yhteys runsaaseen ruokintaan tai vaahdottajan vajaatoimintaan.

Nilsen & Fossán totesivat, että elävää kiveä sisältävissä akvaarioissa on huomattavasti vähemmän ongelmia kuin sellaisissa akvaarioissa, joissa on käytetty "kuollutta" rakennusainetta elävän kiven korvikkeena.

Joskus voi sattua niinkin onnekkaasti, että tämä limainen levä häviää yhtä äkkiä kuin se on tullut.

Viherlevät ja sen syöjät

Viherlevät ovat suurin leväryhmä. Ne ovat yksisoluisia riihlevyjä, kuten leivistä¼ä. Monilla niistä on mutkikas biologinen kierto, jossa voi olla kaksi tai useampi erinäköinen vaihe.

Tässä käsitellään vain kaikkein tärkeintä lahkoa Caulerpa.

Suvut Bryopsis ja Derbesia

Kun akvaario on ollut käytössä muutamia viikoja ja käytössä on suurehko valomäärä sekä voimakas veden virtaus, saavat nämä olosuhteet aikaan viherlevien kasvun. Ajankohdaltana on olemassa viherlevän kasvu alkaa sinilevän kadottua eli noin kolmesta kuuteen viikkoa käynnistämisestä. Muutamassa poikkeustaukon lukuun ottamatta viherlevä on joko sukua Bryopsis tai Derbesia.

Bryopsis spp. on muodoltaan oksamainen esimerkiksi saniaista. Derbesia spp. vastaavasti on muodoltaan kuin pitkä rihma, jossa ei ole oksia lainkaan. Jos näiden ruoholevien (eng filamentous tai hair algae) annetaan kasvaa vapaasti, voimakkaasti kasvaa niitä pohjalle, mutta evänsyöjäkalat eivät juuri suostu sitä syömään.

Derbesia spp. voi puolestaan tulla oikein kunnon riesa, koska se kasvaa erittäin nopeasti peittäen alleen kaiken ja tappaa sen.

Vanha koulukunta on pitänyt runsasta ruoholevän kasvua terveen akvaarion merkkinä, mutta nykyisin ollaan aivan vastakkasta mieltä. On täysin mahdotonta hoitaa hyvin ruutu-akvaariota, mikäli ruoholevän kasvua ei rajoiteta. Ruoholevän kilpaillee symbioottisen zooxanthellaen kanssa ja voi aiheuttaa epäsuorasti niiden korallien tai eläinten kuoleman, jotka elävät symbioisssa zooksantellin kanssa. Tämä siksi, että matalat ja elävään kiveen kiinnittyneet eläimet eivät pysty puhdistamaan sitä syömiään kulleen nopeasti.

Lisäksi on muistettava, että ruoholevää siteä on oikein paljon ravinteita ja kuollessaan vapauttaa sitä takaisin akvaarioon, eli jos on paljon ruoholevää, sitä myös kuolee paljon ja samalla saastuttaa akvaariota.

Kaikkein tärkeintä on, että ensimmäiset akvaarioon laitettavat eläimet ovat levän-syöjä. Nilsen & Fossā jakavat ne kolmeen ryhmään:

- Lajit, jotka syövät viherleviä ja muita pehmeitä leviä
- Lajit, jotka syövät useita levälajeja, myös kalkkipitoista levää
- Lajit, jotka syövät pääasiassa lihaa ja levää vain lisäruokana

Esimerkkinä näistä ovat Zebrasoma flavescens eli keltävälskäri ja Zebrasoma xanthurus eli keltapyrstövälskäri.

Esimerkkinä näistä ovat Zebrasoma flavescens eli keltävälskäri ja Zebrasoma xanthurus eli keltapyrstövälskäri.

Näiden kahden ensimmäisen ryhmän eläimet syövät pääasiassa levää, mutta voivat syödä myös mikro-organismeja ja hyväksyä mahdollistaa korvaavaa ruokaa.
Seuraavat kaksi kuukautta

Eläinten sopeuttaminen eli akklimatiointi akvaarioveteen on teh- tävä oikeoppisesti, jotta ne selviytyisivät hengissä täästä vaiheesta. Tästä asiasta on kerrottu tarkemmin täällä (sivu 93).

Rihmalevän kasvukausi kestää 20–30 päivän paikkeiltu tuonne sadanteen päivään pävää käynnistämisestä. Tämän vaiheen aikana ei siis saa sijoittaa akvaarioon herkkää eläimiä. Paras tapa ehkäistä tämän levävaiheen pidentymistä on huolehtia korvauksen puhtaudesta sekä syöttää sen mukana kalkkivettä. Ruokointa ei saisi suorittaa, koska akvaarioissa pitäisi olla vain sellaisia eläimiä, jotka syövät pääasiassä rihmaevää. Vaahdotimen puhdistus säännöllisesti on tärkeää myös nälä alkuvaiheessa (myöhemmin ruokajäämat ”rasvoittavat” vaahdotinta ja näin alentavat sen toimintaa).

Joissakin tapauksissa rihmalevävaihe voi jäädä kokonaan väliin ja näin lyhentää kunnostustyöaikaan huomattavasti. Yleensä syy on sellaisen, joka syövää eläintä, see voi aiheuttaa ongelmia akvaariossa. Jos akvaarioissa on riippumaton levä, ja on sellaista eläinä, joka syövää elämiä, on mahdotonta tehdä sellaisia muutoksia akvaarioon ennen kuin jostakin vaiheesta riippumaton levä on vahingoittunut. Tämä on mahdotonta tehdä sellaisia muutoksia akvaarioon ennen kuin jostakin vaiheesta riippumaton levä on vahingoittunut.

Vihreä kalkkipitoisen levä, suku Halimeda

Halimeda spp on luja eikä helposti häiritse levää syövistä eläimiä. On vaikea muuttaa lajia, joka syö sitä. Syy tähän on se, että levä erittää aineen- vaihdun ja leviää. On mahdotonta tehdä sellaisia muutoksia akvaarioon ennen kuin jostakin vaiheesta riippumaton levä on vahingoittunut. Tämä on mahdotonta tehdä sellaisia muutoksia akvaarioon ennen kuin jostakin vaiheesta riippumaton levä on vahingoittunut.
Suku Caulerpa

Caulerpa prolifera on yleisimmin tunnettu laji ja akvaarioissa se viihtyy, kun valon määrä ei ole korkea – eli esim. loisteputkien valossa. Tämä levä olisi paras mahdollinen ”leväsuodatin” käytettäväksi esimerkiksi refugiossa, mutta sillä on eräs ominaisuus, joka rajoittaa sen käyttöä. Se lisääntyy myös seksuaalisesti ja tässä tilanteessa emokasvi kuolee ja surkastuu ja vain pieni osa siitä selviää hengissä. Tällöin akvaarioon vapautuu suuria määriä ravinteita, jotka vaikuttavat suuresti akvaarion tasapainoon. Vastaavasti käy monille muillekin Caulerpa spp. lajeille.

Akvaarioon voi hyväksyä pieniä määriä tätä levättyyppiä. On kuitenkin muistettava, että kun ottaa Caulerpaan akvaarioon, on sitä hyvin vaikea poistaa sieltä kokonaan. Vaikka sitä harvennettaisiin kovastikin, uutta alkaa kasvaa hyvin pienistäkin fragmenteista. On muistettava myös, että Caulerpa kilpaillee vastaavalla tavalla zooksantellin kanssa kuin rihmaleväkin.

Ruskolevä

Punalevä

Punalevää (eng red algae) löytyy hyvinkin syvältä meristä. Ne sisältävät R-phycoerythrin ja R-phycocyanin pigmenttejä, jotka antavat niille niiden punaisen vivahteen ja mahdollistavat myös fotosynteesin näille leville hämärässä valossa. Tätä levää löytyy 600 sukua ja yli 4000 lajia. Tässä mainitaan vain muutama.

Punainen kalkkipitoinen levä

Kalkkilevää on kahta muotoa:

- Oksaiset ylöspäin kasvavat
- Kuorimaiset pintaa pitkin kasvavat

Molempia löytyy riutta-akvaarioista ja sen kasvun huomaa helposti elävässä kivessä. Myös akvaarion lasiin ilmesty pieni punaisia renkaita, jotka on sään-nöllisesti poistettava.

Zooksantelli

Usein korallit ovatruskeita ja tämä johtuu sen kanssa symbioosissa elävää levää. Zooksantelli (Zooxanthellae) on siislevä, joka elää symbioosissa korallin polyyypien kanssa. On myös muitakin eläimiä kuten simpukat, jotka omavaat tämän symbioottisen levän.

Kuten kaikikasvut, zooksantelli tarvitsee ravintoaineita ja erityisesti tyypeä ja fosforia. Zooksantelli ei voi saada näitä kaikkia riittävästi ravinnekoyhästä merivedestä ja siksi on olemassa teoria, jonka mukaan ne löytävät ravinnon isääntäeläimen avulla osaksi vedestä ja osaksi kierrätyksen avulla eli eri aineosia käytetään useaan kertaan.

Yleisesti ottaen voidaan sanoa, että ilman zooksantellia ei olisi koralliruttoja.
Ensimmäiset ostokset

Alla on yksi ehdotus ensimmäisistä hankittavista eliöistä. On toki muistettava akvaarion koko, koska pieneen voi ottaa vain muutaman eliön ja isoon vastaavasti enemmän.

<table>
<thead>
<tr>
<th>Elö</th>
<th>Kuva</th>
<th>Selite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zebrasoma flavescens (keltavälskäri)</td>
<td></td>
<td>- useimmat makrolevät</td>
</tr>
<tr>
<td>Ctenochaetus strigosus (keltasilmävälskäri)</td>
<td></td>
<td>- mikrolevät, pienet makrolevät</td>
</tr>
<tr>
<td>Salarias fasciatus (viherluikero)</td>
<td></td>
<td>- mikrolevät, pienet makrolevät. Ei mahdollisesti suostu syömään korvaavaa ruokaa.</td>
</tr>
<tr>
<td>Siganus vulpinus (kettukala)</td>
<td></td>
<td>- useimmat makrolevät, myös Caulerpa spp.</td>
</tr>
<tr>
<td>Mespilia globulus (merisilli)</td>
<td></td>
<td>- kaikki levät, mutta eivät suuret makrolevät</td>
</tr>
<tr>
<td>Astraea spp. (kotilo)</td>
<td></td>
<td>- leväkalvo, sinilevä, piilevä, rihmalevä</td>
</tr>
<tr>
<td>Ophiolepis superba (käärmemeritähti)</td>
<td></td>
<td>- detritus, ruokajäämät (kuva Rauno Räsänen)</td>
</tr>
</tbody>
</table>
14. **Kolmannesta kuukaudesta eteenpäin**

Sadannen päivän paikkeilla on normaalisti saavutettu se vaihe, jossa rihmalevä on jotakuinkin hävinnyt akvaariosta. On kuitenkin muistettava, että kaikissa akvaarioissa kolme kuukautta ei riitä levävaiheen loppumiseen, odotusta voi siis kestää myös pidempään. Rihmalevän kadottua voidaan pikku hiljaa lisätä ensimmäisiä koralleja.

Koralleja lisättäessä ja paikoilleen sijoitettaessa on huomioitava niiden kasvin tarvitsema tila. Alussa ne saattavat näyttää olevan liian harvassa, mutta jo vuoden kuluttua samat korallit saattavat taistella olemassaolostaan polttelemalla toisiaan, koska kasvutila saattaa olla lopussa. Joidenkin korallien ympäriställä on oltava vapaata tilaa, koska niillä on polttavia pitkälle ulottuvia lonkeroita joilla ne polttavat liian lähellä olevan naapurikorallia. Onkin erittäin hyvä ennakkoen selvittää kunkin korallin käyttäytymisen ja sen vaatimat olosuhteet. On siis aivan turvallista vaatia korallia pumpun lähelle, koska se ei tule viihtymään kyseisellä paikalla vaan kuolee pois.

Houkutus ostaa isoja koralla kaupasta on suuri, koska näin saataisiin akvaario nopeasti näyttäväksi. Tämä on aika kallis tapa. Mieleniin kannattaa etsiä pienempiä yksilöitä ensinnäkin siksi, että ne ovat halvempia (joten niitä saa enemmän) ja toiseksi, että korallin väritys saattaa muuttua kovasti, kun se on siirretty omaan akvaarioon. Ei ole mitään tekeä siitä, että tietyn värien kaupasta ostettu koralli pysyy kyseisenä värinenä omassa akvaarioissa. Tuntuu muuten aika turvattavalta, kun jonkin ajan kuluttua huomaat korallin muuttavan samanväriseksi kuin viereinen koralli – erityisesti, jos ne ovat lajitaltaan ja rakenteeltaan muutenkin samanlaisia. Siksi sipää pienempiä korallien hankinta ja kasvatus omassa akvaariossa on järkevää.

Myös kaveriilta saadut tai ostetut fragmentit ovat oiva tapa kartuttaa eliöstöä. Fragmenttien käsittelyssä on oltava huolellinen ja niitä olisi myös syytä käsittellä kertakäyttöhanskat käsisessä, erityisesti kiivin kiinni liimattaessa. Jotkut fragmentit saattavat kuollu nopeasti altaasta toiseen siirrettäessä. Tällaisten herkkien yksilöiden kohdalla olisi järkevää leikata ne irti ja liimata kivenpalaan ja tämän jälkeen pitää vielä muutama viikko alkuperäisessä akvaarioissa ennen siirtoa. Tässä ei anneta vinkkejä "ostoslistasta" kuten ensimmäisten ostosten kohdalla tehtii, koska listaan vaikuttaa tästä eteenpäin se, millaiseen akvaariotyyppiin on päätyyt.
15. **Vuosi alkaa tulla täyteen**

Kun akvaariomme saavuttaa noin 10 kuukauden iän, alkaa se olla jo suhteellisen hyvin vanhentunut ja stabiloituunut, jotta sinne voidaan laittaa kaikkein herkimmätkin eläimet. Tällaisia ovat esimerkiksi simpukat. Ne vaativat riittävän suuren valaistuksen sekä erittäin hyvän vedenlaadun. Lisäksi akvaarion veden kalsiumpitoisuuden on oltava koko ajan riittävä, ja tämän vuoksi tarvitaan kalkin säännöllistä lisäämistä.

Akvaariossa alkaa kasvaa hyvin myöös punainen kalkkilevä, joka leviää kaikkialle, missä valaistuksen määrä ei ole voimakas. Kovan valon alueille kertyy myös kalkkilevä, mutta huomattavasti hitaammin kuin muualla.

Tässä vaiheessa on myös muistettava, että esimerkiksi uuden elävän eläimen lisääminen on tehtävä varoilla. Ison määrän lisääminen kerralla aiheuttaa ammoniakkipiikin ja akvaarion tasapainon palautuminen saattaa kestää parikin kuukautta. Sen vuoksi elävää kiveä tulisi lisätä pieni määrä kerrallaan ja riittävän pitkin aikavälein. Tällöin akvaarion biologinen suodatus yhdessä vaahdottimen kanssa pystyy selviytymään syntyneestä saastekuormasta ilman suurempia notkahduksia.

Tässä on hiukan yli 800-litrainen akvaario alle vuoden ikäisenä. Huomion arvoista on se, että suurin osa koralleista ja elävää kivistä on siirretty vanhasta altaasta tähän uuteen. Sen vuoksi akvaario on jo vajaan vuoden kuluttua täydellä loistossaan. Akvaarion kypsyminen tapahtuu tällaisessa tilanteessa suhteellisen nopeasti (Marko Haaga).
16. Altaan toimintaan vaikuttavat tekijät

Akvaarion hyvän biologisen toiminnan takaavat määrät yksi perustekijät, joita olisi oltava jatkuvasti kunnossa, joten niitä olisi tarkkailtava säännöllisesti. Näitä tekijöitä ovat seuraavat:

- lämpötila
- suolapitoisuus
- alkaliniteetti ja kalsiumpitoisuus
- pH
- vedenvaihdot
- muut tekijät

Perusasiat on syytä kirjata tiedonkeräystaulukko (sivu 164), josta on helppo seurata tapahtumien kulkua pidemmällä aikavälillä sekä havainnoida mahdollisia poikkeamuksiin. Tähän taulukkoon on helppo kirjata myös erilaisia muitakin toimia akvaarion huoltoon. Ihmisen muisti on suhteellisen lyhyt, joten tälläihin kirjanpito muistuttaa mahdollisista toimista, joita tulisi tehdä. Esimerkiksä pumpujen ja vaahdottomien puhdistuskerroksen on helppo tarkistaa ja siten ne tulee tehtyä säännöllisemmin.

Lämpötila

Valkaistumineen ei vaikuta ainoastaan lämpötilaan, vaan siihen osasyynä on myös UV-säteily. Akvaariossa erityisesti läheisellä pintaalalalla olevat korallit saattavat olla kesäaikaan vaarassa valkaistua, koska lampuista tuleva säteily yhdistävissä veden lämpötilan nousuaan voivat valkaistua.

Lämmittimiä on parempi olla kaksi kappaletta siltä varalta, että toinen niistä rikkoontuu, joten tällaisessa tilanteessa ainakin toinen estää veden lämpötilan laskevista liian alas. Aikaisemmin lämmittimistä ja lämpömittarista on ollut juttua, joka löytyy täältä (sivu 46).

jäähdytämiseksi. On muistettava käyttää RO- tai DI-vettä myös jääpalojen tekemiseen.

Suolapitoisuus

Veden suolapitoisuudesta ja ominaispainon mittauksesta on ollut lyhyesti juttua aikaisemmin täällä (sivu 46). Suolapitoisuus ilmoitetaan kirjallisuudessa kahdella tavalla:

Vanha merkintä:
35 ppt tai 35 ‰ (painon tuhannesosa eli promille)

Uusi merkintä:
S = 35 tai 35 PSU (eng practical salinity unit, suolapitoisuus promilleina)

Akvaarioveden suolapitoisuuden tulisi olla määrittelyjen arvojen välillä. Tätä olisi tarkkailtava säännöllisesti, koska suolapitoisuus pyrkii laskemään osaksi siksi, että vettä puhdistetaan valkuaisainevaahdottajalla (tässä prosessissa järjestelmä poistaa hiukan suolaa) ja osaksi siksi, että eri toimenpiteiden johdosta suolaa poistetaan akvaariosta ja se korvataan makealla vedellä. Tyypillinen tällainen tapahtuma on esimerkiksi fragmentin vieminen akvaariosta ja se korvataan makealla vedellä. Tyypillinen tällainen tapahtuma on esimerkiksi fragmentin vieminen akvaariosta ja se korvataan makealla vedellä. Tyypillinen tällainen tapahtuma on esimerkiksi fragmentin vieminen akvaariosta ja se korvataan makealla vedellä. Tyypillinen tällainen tapahtuma on esimerkiksi fragmentin vieminen akvaariosta ja se korvataan makealla vedellä. Tyypillinen tällainen tapahtuma on esimerkiksi fragmentin vieminen akvaariosta ja se korvataan makealla vedellä.

Hydrometrillä mitattu

Hydrometrillä ominaispainoa mitattaessa verrataan akvaarioveden tiheyttä puhtaana vedeen tiheyteen.

Hydroöhyys: 10 kaksi erityypistä hydroöhyy. Toinen on akvaariovedessä kelluvu malli ja toinen on "muovikotelot", johon laitetaan akvaariovetta, jolloin siinä oleva viisari näyttää suolapitoisuuden.

Akvaarioharrastajan kannalta tämä viisarimalli on ehdottomasti parempi vaihtoehto.
Kelluvan hydrometrin suurin ongelma on se, että niitä löytyy hyvin monta eri tyyppiä. Harrastajan on tiedettävä 100 % varmuudella, millainen mittari hänellä on käytössä. Alla on joitakin maailmassa käytössä olevia tyyppejä:

- lämpötilan kalibrointi tehty 3,98 °C ja mitataan ominaispainoa
- lämpötilan kalibrointi tehty 3,98 °C ja mitataan tiheyttä
- lämpötilan kalibrointi tehty 20 °C ja mitataan ominaispainoa
- lämpötilan kalibrointi tehty 20 °C ja mitataan tiheyttä
- lämpötilan kalibrointi tehty 25 °C ja mitataan ominaispainoa (esim. Tropic Marin)
- lämpötilan kalibrointi tehty 25 °C ja mitataan tiheyttä (esim. Sander)

Kaksi viimeisintä on tarkoitettu akvaariokäyttöön. Ne ovat siitä käteviä, että ainakin aamuisin akvaariolämpötila on tuossa 25 °C arvossa hyvin usein. Tällöin ei tarvitse tehdä minkäänlaisia muuntoja lämpötilalta toiseen.

Kelluvan hydrometrin käytön tekee hankalaksi myös se, että veden ominaispaino vaihtelee lämpötilan mukaan ja hydrometri on valmistusvaiheessa kalibroitava jollekin tietylle lämpötilalle. Tämä tarkoittaa sitä, että hydrometri on tehtävä jollekin tiettyyn määriteltyyn painoiseksi, jotta se syrjäyttää eli uppoaa ennalta määritellyn verran tietyssä lämpötilassa. Mikäli mittaus suoritetaan muussa muussa lämpötilassa kuin mihin hydrometri on kalibroitu, on käytettävä muunnostauleukkoa oikean arvon saamiseksi. Tämä lisää virhemahdollisuuksia otteeseen. Olisikin tärkeää käyttää aina muuntotaulukkoa.

Kelluvalla hydrometrillä mitattaessa arvo luetaan vedenpinnanatasosta eli ei siitä, mihin vesi kiipeää mitta-asteikolla.

Viisarimallinen hydrometri

Kuvan mukainen hydrometri on kätevä käyttää. Siinä on astekolla ilmoitettu suolapitoisuus sekä ominaispaino. Se on lämpötilan suhteen itsekorjaava eli sillä mitattaessa ei tarvitse tietää akvaarioveden lämpötilaa.

Toimintaperiaatteena on se, että mittariin kaadetaan vettä yläreunassa olevaan viivaan saakka. Viisari on kokonaan vedessä ja se on tehty kahdesta erilaisesta materiaalista. Tiheysero veden ja materiaalien välillä vaikuttaa siten, että toinen materiaaleista pyrkii painamaan viisaria alaspäin ja toinen nostamaan ylöspäin. Viisari hakee tasapainon ja näyttää lukeman, joka vastaa veden suolapitoisuutta. Koska viisari on kokonaan vedessä, sitä ylöspäin nostaa ja alaspäin painava voima pysyvät samoina, vaikka lämpötila on erilainen eri mittaushetkän.

Tämän hydrometrin kohdalla on oltava tarkkana, jottei ilmakuplia jää viisariin ja vaikuta mittautulokseen. Parasta on tehdä mitattu kahteen kertaan, jolloin varmistetaan oikeasta tuloksesta.
Veden sähkönjohtokyvyn mitaaminen

Tällä menetelmällä mitataan veden sähkönjohtokyvyyttä millisiemenseinä (mS). Nämä saadaan tarkka lukena veteen liuonneista ioneista ja taulukoista voidaan lukea veden suolapitoisuus.

Nämä mittavälineet ovat kalliita. Mittausanturista on pidettävä hyvää huolta pitämällä se puhtaana ja kalibroimalla aika-ajoin.

Alla on taulukko, jossa on esitetty suolapitoisuuden, ominaispainon, tiheyden ja sähköjohtavuuden vastaavuudet. Olisi hyvin suositeltavaa, että erityisesti erilaisissa keskusteluissa käytettäisiin PSU arvoa eli esim. tyyllin "minulla suolapitoisuus on päässyt hiukan tipahtamaan, se on nyt 32".

<table>
<thead>
<tr>
<th>Suolapitoisuus PSU</th>
<th>Ominaispaino 25°C</th>
<th>Tiheys 25°C</th>
<th>Sähköj. johtavuus mS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000</td>
<td>0.99705</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>1.0226</td>
<td>1.0196</td>
<td>46,2</td>
</tr>
<tr>
<td>31</td>
<td>1.0233</td>
<td>1.0203</td>
<td>47,6</td>
</tr>
<tr>
<td>32</td>
<td>1.0241</td>
<td>1.0211</td>
<td>49</td>
</tr>
<tr>
<td>33</td>
<td>1.0249</td>
<td>1.0218</td>
<td>50,4</td>
</tr>
<tr>
<td>34</td>
<td>1.0254</td>
<td>1.0226</td>
<td>51,7</td>
</tr>
<tr>
<td>35</td>
<td>1.0264</td>
<td>1.0233</td>
<td>53</td>
</tr>
<tr>
<td>36</td>
<td>1.0271</td>
<td>1.0241</td>
<td>54,4</td>
</tr>
<tr>
<td>37</td>
<td>1.0286</td>
<td>1.0256</td>
<td>57,1</td>
</tr>
<tr>
<td>38</td>
<td>1.0294</td>
<td>1.0264</td>
<td>58,4</td>
</tr>
</tbody>
</table>

Suolapitoisuuden arvot S = 33 – 36 lämpötilassa 25 ºC on todettu sopiviksi arvoiksi akvaarioon.

Luonnollinen suolapitoisuus on keskimäärin S = 34.7, mutta vaihtelee alueelta toiselle. Esimerkiksi Punaisella merellä se on juuri alle 40 ja Itämerellä tuskin 10.

Jos ei täysin ymmärrä mitä ominaispaino, tiheys ja suolapitoisuus tarkoittavat, kannattaa hankkia joko visarimallinen hydrometri, jossa mittaustulos on oikea lämpötilasta riippumatta, tai kelluva akvaarioon tarkoitettu hydrometri, johon on merkitty selvästi oikean suolapitoisuuden alue (tiheys- tai ominaispaino). Mittaus kannattaa suorittaa aamuisin, kun veden lämpötila on 25 ºC.

Tätä ohjetta noudattamalla ei voi tehdä virheitä.
Alkaliniteetti ja kalsiumpitoisuus

Jos havaitsee mittauksissa jommankumman arvosta olevan selvästi poikkeavan, suoritetaan testi uudestaan toisella testillä, jotta ei lähdetä korjaamaan testivirheestä johtuvaa "vikaa", joka puolestaan voi aiheuttaa "korjauksen" seurauskensa todellisen ongelmaksi. Maltti on välttää.

Normaalit arvot ovat seuraavat:

- Alkaliniteetti 2,5 – 4 meq/l (7 – 11 dKH)
- Kalsium 380 - 450 ppm

Jos akvaarioin arvot ovat näiden arvojen sisällä, ei ole syyttä tehdä minkäänlaisia korjauksia\(^{21}\). Jos alkaliniteetti on esimerkiksi 4 meq/l ja kalsium 380 ppm, ei ole järkevää lähteä nostamaan kalsiumaavoa, koska korkeampi arvo ei olisi yhtään sen "parempi". Jos toinen arvo on hiukan ylärajan yläpuolella ja toinen OK, ei tällöinkään kannata tehdä mitään, koska keskinäiset arvot toisinaan ovat hiukan sattumanvaraisia.

Seuraavaksi kerrotaan niistä toimista, joita pitäisi tehdä, jos jompikumpi tai molemmat ovat annettujen arvojen ulkopuolella. Arvojen tulisi olla keltaisella merkityllä alueella ja risti kertoa sen, missä meriveden arvo sijaitsee (2,5 meq/l ja 420 ppm).

Kalsiumin ja alkaliniteetin erikseen, on oltava hyvin varovainen, jottei aiheuta epätasapainoa lisäämällä jompaakumpaa liikaa.

Jos on lisännyt selvästi suuren määrän kalsiumia ja alkaliniteettia eikä kuitenkaan saa arvoja nousemaan halutulle tasolle, on syytä tehdä magnesiumtesti. Mikäli magnesiumtaso on alentunut oleellisesti, on sillä selvä vaikutus kalsiumkarbonaatin abioottiseen saostumiseen. Magnesiumtason tulisi olla sama kuin merissä eli 1300 ppm. Tarvittaessa nostetaan magnesiumarvo oikeaksi lisäämällä sitä liukena.

Normaalisti korjautaan normaalikloridiin lisäämällä arvo on saatu riittävästi sellaiselle alueelle tai jommallekummalle alkasemmin korroottu ongelma-alueelle. Loppuosa hoidetaan edellä kerrotun mukaan.

Tätä korjautaa ei voi tehdä kalkkiveden tai kalkkireaktorin avulla tai kaksikomponenttijauheen oikeaan suhteeseen saostaan alueelle. Tämä ei välttämättä tarkoita sitä, että alkaliniteetti olisi alhaalla tai korkealla (tosin melkein aina liian alhaalla). Korjataan tehokkaasti, jos on oltava tarkoitus testata arvoja. Jos ongelma on paha eli ollaan lähellä oikeaa alakulmaa, on parhaana korjataan liukena.

Jos alkaliniteetti on alle 4 meq/l (11 dKH), on paras keino nostaa sitä lisäämällä alkaliniteettia nostava lisäaine, jolloin päästään jokseenkin tasolle tai jompaakummalle ensimmäiselle on gelma-alueelle. Tämä on jälleen toiminta, kuten edellisissä kohdissa on mainittu. Jos pH on yli 8,2, on sopiva lisäaine ruokasooda (natriumbi karbonaatti). Jos pH on alle 8,2, on pesusooda (natriumkarbonaatti) oikea valinta – tosin joutuu ehkä käyttää neuvotellen myös ruokasooda, mikäli pH nousee yli 8,5:een.

Jos alkaliniteetti on alle 4 meq/l (11 dKH), on paras keino nostaa sitä lisäämällä alkaliniteettia nostavaa lisää matkustaa jokseenkin tasolle tai jompaakummalle ensimmäiselle ongelma-alueelle. Tämä on jälleen toiminta, kuten edellisissä kohdissa on mainittu. Jos pH on yli 8,2, on sopiva lisäaine ruokasooda (natriumbi karbonaatti). Jos pH on alle 8,2, on pesusooda (natriumkarbonaatti) oikea valinta – tosin joutuu ehkä käyttämään apuna myös ruokasoodaa, mikäli pH nousee yli 8,5:een.

Tätä korjautaa ei voi tehdä kalkkiveden avulla tai kalkkireaktorilla tai kaksikomponenttijauheen oikeaan suhteeseen saostaan alueelle. Tämä ei välttämättä tarkoita sitä, että alkaliniteetti olisi alhaalla tai korkealla (tosin melkein aina liian alhaalla). Korjataan tehokkaasti, jos on oltava tarkoitus testata arvoja. Jos ongelma on paha eli ollaan lähellä oikeaa alakulmaa, on parhaana korjauttavaan liukena.
Joitakin ohjearvoja eri lisääneiden lisäämisille ja valmistamiselle löytyy, mutta on kuitenkin muistettava tehdä lisäysten aikana riittävä määrä testauksia, koska kuka tuntee tilanne on omansa, eikä löydy kuin suuntaa antavia arvoja.

Ruokasooda (natriumbikarbonaatti)
Jos nostetaan 200 litran altaan arvoa 1 meq/l, tarvitaan 16 g ruokasoodaa (natriumkarbonaattia tai natriumvetykarbonaattia). Koska teelusikallinen soodaa painaa noin 6 g, saadaan sillä nostettua 200 litran akvaarion alkaliniteettiarvoa n. 0,4 meq/litra eli n. 1 dKH.

Pesusooja (natriumkarbonaatti)
Jos nostetaan 200 litran altaan arvoa 1 meq/l, tarvitaan 10 g pesusoodaa. Koska teelusikallinen soodaa painaa noin 6 g, saadaan sillä nostettua 200 litran akvaarion alkaliniteettiarvoa n. 0,6 meq/litra eli n. 1,7 dKH.

Pesusooda käytettäessä tulisi tarkistaa, ettei siihen ole lisätty saippua tai hajusteita.

Mielenkiintoista katseltavaa löytyy muillekin kuin meille harrastajille.
Veden pH ilmaisee kuinka paljon vetyioneja eli protoniteita vesi sisältää.

Puhdas vesi sisältää vetyonia (H⁺) ja hydroksidi-ionia (OH⁻) ja kun kumpiakin on yhtä paljon, neutralisoivat ne toisensa, joten pH on neutraali 7. Jos vetyioneja eli protoniteita on enemmän, tulee vedestä hapanta eli pH on alle 7. Jos hydroksidi-ioneja on enemmän, on vesi tällöin emäksistä ja pH on yli 7.

Meriveden pH on keskimäärin 8,2, joten se on emäksistä ja siinä on enemmän hydroksidi-kuin vetyioneja. Tämä pH-arvo pysyy hyvin vakaana ja vaihtelut ovat pieniä. Akvaarioissa vesi on kuitenkin niin pieni, että siellä vaihtelut ovat paljon suuremmat. Arvot välillä 7,8 - 8,5 ovat vielä kuitenkin sallittavissa rajoissa.

Harrastajan säännöllisenä tehtävänä on seurata pH-arvoa, koska sillä on suora vaikutus akvaarion toimintaan. Liian alhainen pH-arvo aiheuttaa stressiä eliöstölle ja lisäksi pH-arvon aleneminen hidastaa kalkkia tarvitsevan eliöstön kalkkirangan muodostumista.

pH:n arvo voi siis vaihdella 7,8 - 8,5 rajoissa kunhan muutama reunaehdo täytetään.

- Alkaliniteetti eli puskurointikyky on vähintään 2,5 meq/L eli 7 dKH ja sekin mieluummin hiukan enemmän, mikäli pH on alakantaisissa.
- Kalsiumtaso on vähintään 400 ppm.
- Kalsiumin ja alkaliniteetin arvot oltava oikeat (ei liian alhaiset tai korkeat), mikäli pH-arvo yläkantaisissa.

pH:n kanssa voi esiintyä kaksi alla esitetyä ongelmata25:
Liian korkea pH

Toinen syy pH:n liialliseen nousuun voi olla lisääneiden käyttöä, jotka nostavat veden alkaliniteettia ja samalla myös pH-arvoa.

Liian matala pH

Yllättävästi huoneilman korkea hiilidioksidipitoisuus voi olla yksi matalan pH-n syy. Uusissa, tiiviisti rakennetuissa koneellisen ilmanvaihdon omaavissa taloissa saattaa helposti tulla tilanne, jossa huoneistoon hiilidioksidipitoisuus noussee korkeaksi, mikäli ilmastointi on säädetty liian pienelle. Ratkaisuna on raittiin ilman johtaminen, tavalla tai toisella, akvaarion läheisyyteen.
Vedenvaihdot

Vedenvaihtotieteys ja sen määrä on sellainen keskusteluaihe, josta ei taideta päästää yhteisymmärykseen koskaan. Toisaalta, siihen ei ehkä ole tarvetta, koska kukin akvaario on yksilönsä ja yhdens akvaarion vedenvaihtoväli ja sen määrä ei välttämättä sovi toiselle akvaariolle.

Makean veden puolella on totuttu runsaasiin viikoittaisiin vedenvaihtoihin – jopa niin suurin, että merivesipuolella vastaava määrä vaihdataan yhden vuoden aikana. Syykin on selvä. Makeavesiakvaarioissa on usein suuri kalakuormitus ja kalojen jätökset likaavat vettä ja parhaana puhdistuskeinona on juuri suuren vesimäärän vaihtaminen.

Merivesipuolella kalakuorma akvaariossa on yleensä paljon pienempi ja jos käytössä on riittävä määrä elävää kiveä ja hyvin toimiva valkuisainevaahdotin, se yhdessä hoitavat veden puhdistamisen erittäin hyvin. Jos kalojen on paljon, on vastaavasti vedenvaihtojen tarve ja määrä myös suurempi. Usein akvaarioissa kasvavan levän määrä on hyvä indikaattori veden laadusta ja vaihdon tarpeesta.

Yleisesti ”normaalin” vaihtomääränä pidetään 10 % kuukaudessa. Löytyy tosin niitäkin, jotka vaihdelevat 10 % vuodessa. Se tiedetään, että runsas vedenvaihto lisää kivikorallien kasvua, mutta joissakin tapauksissa tämä kasvu on sellaista, jossa koralliranka jää suhteellisen heikoksi ja murtuu helposti juuri tuon nopean kasvun seurauksena. Nilson & Fossä27 suosittelevat pieniä vedenvaihtoja.

Toiset perustelevat pieniä vedenvaihtoja sillä, että ainoa tarve on lisätä uuden veden mukana niitä hivenaineita, jotka katoavat vaahdotuksen yhteydessä. Jos tehdään isoa vedenvaihtoja, saatetaan akvaario stressitilaan, koska eliöstön on sopeututtava veteen, jonka suolapitoisuus ja muut tasa-paino on erilainen kuin aikaisemmin. Siksi jotkut suosivat hyvin pieniä ja lyhyin väliajoin tehtäviä vaihtoja, koska muutokset ovat tuolloin hyvin pieniä.

Toiset katsovat, että luonnontuolla mereltä vyöryvää vesi ”vaihtuu” kokoajan, joten eliöstö on vuosituhansien aikana tottunut ”runsaisiin” vedenvaihtoihin. He perustelevat suuria vedenvaihtoja korallien selvästi parempaan kasvunopeuteen. Oli niin tai näin, olisi vedenvaihto kuitenkin tehtävä määrättyjä rutineja noudattaen.

Jos mahdollista, olisi vedenvaihto tehtävä ala-alaan kautta. Tällöin pääaltaan vedenpinnan läheisyydessä olevat korallit eivät joudu kuivalle. Tosin luonnossakin on tilanteita, joissa vuoroveden yhteydessä osa koralleista on täysin vedenpinnan yläpuolella.

Uusi vesi olisi tehtävä riittävän ajoissa ja annettava vanhentua astiassa ainakin vuorokauden ajan ennen vaihtoa. Lisäksi veden lämpötilan tulisi olla mahdollisimman lähellä akvaarioveden lämpötilaa.

Käytä ainoastaan RO/DI vettä, johon suola lisätään. Suolana kannattaa käyttää pidemmällä ajalla käytössä hyväksi havaittua suolaa. Suolaveden valmistuksesta on lyhyesti täällä (sivu 62)

Jos valmistaa isomman määrän suolavettä, jota sitten vaihdataan pienissä erissä, on huolehdistä välttää, ettei säiliössä ole liian paljon vettä, joka vaurioittaa säiliöitä tai ympäristöä.
Vesitestit

Aikaisemmin vesitesteistä on juttua täällä (sivu 48).
Mainittujen pH-, KH-, Ca-, Mg- ja NO₂/NO₃ -testien lisäksi voidaan testata fosfaattipitoisuutta. Muitakin testejä on, mutta harrastajan tulee miettiä tilanteiden mukaan, mikä todella on tarpeellista.

Muut tekijät

On olemassa sanonta: "puhtaus on puoli ruoka". Tämä pitää paikkansa erityisesti merivesiakvaarioiden yhteydessä.
Kertoa, että yksi öljytippa pilaa 1.000.000 litraa puhdasta vettä. Miten puhtaat ovat kätemme, kun laitamme ne esim. 400 litran akvaarioon. Onko kynsien alla jäänyt likaa esim. ruohonleikkurin korjauksen jäljiltä? Miten se vaikuttaa akvaarioveteen?

Osa 3

17. Paksu hiekkapeti

Mielipiteitä jakava aihe on tämän hiekkakerroksen toimivuus. Toiset vannovat sen nimeen ja toiset sanovat sen olevan alkapommin. Alkapomin kannalla olevien mukaan pohjaan kertyy erilaisia myrkkyyjä, jotka jossakin vaiheessa lähtevät liikkeelle ja aiheuttavat eliöstön kuolemista. Tällainen tapahtuma voisi olla vaikkapa tilanne, jossa pumpu vahingoissa alkaa puhaltaa pohjalle kaivaen auki hiekkapetin ja näin vahinko pääsee tapahtumaan.

Piirustushetkellä oleva "oikeanlainen", jotta siitä löytyisi riittävästi kuhunkin kerrokseen kuuluvaa eliöstöä ja bakteereita. Kaikkien tärkeimpiä ovat erilaiset madot, kotilot ja äyriäiset eli ns. ”puhdistajat”. Kun niistä on yleensä erikoistunut vain tietynlaiseen ravintoonsa. Siksi onkin tärkeää, että eliöstö on mahdollisimman monipuolista.

Akvaarion Juutessa on kolmesta eliöstä, jotka ovat ollut esimerkiksi akvaarion laitettu ruoka syödään vähintään viiteen kuuteen kertaan ennen kuin se on syöty lähes olemattomiin tai nousee typpikaasukuplana ylös akvaarioista.

Kuvissa on mikroskoopilla otettuja makrokuvia akvaarion mikroeläistöstä (Tatu Vaajalahti).

Jos tämä "puhdistajaporukka" ei ehdin poistaa kaikkea sitä ruokaa, joka akvaarioon laitetaan, on se erinomaista ruokaa kevään eli eliöstö syödään kalojen, kotilojen, erakkorapujen yms. toimesta. Ruokaketjussa eliöstö pienenee sitä mukaan mitä useimmin ruoka tulee syödä.
On myös muistettava, että eliöstö lisääntyy ja tuottaa munien, spermien ja poikasten muodossa ravintoa esimerkiksi koralleille. Akvaarion ekologinen järjestelmä tuottaa siis, pääasiassa kaloihin annetusta ruoasta, ruokaa myös monelle muulle eliöstölle, jota ei tarvitse ruokkia (tai näin on kuviteltu).

Ronald Shimekin mukaan paksun hiekkapetin tulisi sisältää seuraavat hiekan raekoot: 1-2 mm, 0,5 -1 mm, 0,25–0,5 mm, 0,125–0,5 mm ja 0,063–1,125 mm. Siksi korallihiekkä, jonka raekoko on 0-2 mm, on erittäin hyvää akvaarioiden pohjalle.

Suomesta löytyvän "sokerimainen" kvartsihiekkä ei joidenkin harrastajien kokemuksen mukaan sovellu hyvin riutta-akvaarioon. Sen raekoko on niin tasaista, että siinä elävien organismien kirjo on huomattavasti kapeampi ja köyhempä kuin korallihiekkassa. Shimekin arvion mukaan akvaarioiden vedenpohjia on 300.000 – 450.000 organismia neljän metrin korkeudessa.

Jos paksun hiekkapetin eliöstö on riittävä eikä akvaariota ruokita liikaa, kerääntyy hiekkapetin hyvin hitaasti myrkyllisiä hivenaineita. Toisaalta yhdessä, jossa ruokitaan liikaa eikä pohjaeliöstö ole riittävä, saattaa hyvinkin päättyä tämän aikaiseen "aiakapommin " räjähdykseen.

Olemassa on muutama paksun hiekkapetin käyttösovellus, joista osa mahdollisesti saattaa ennaltakehäästää mahdollisesti syntyvää ongelmaa.

- Paksu hiekkapeti pääakvaariossa
- Paksu hiekkapeti ala-alaassa
- Paksu hiekkapeti refugiossa

Paksu hiekkapeti pääakvaariossa

Mikäli järjestelmässä ei ole käytössä ala-allausta ja/tai refugiota, on tällöin hiekkapeti tehtävä pääaltaaseen. Normaalisti paksu hiekkapeti on syvyydeltään 7-10 cm. Jos hiekkakerros on ohuempi, ei sen alaosana syitä riittävä hapetonta aluetta. Tästäkin asiasta tosin ollaan monta eri mieltä.

Tärkeintä, esteettisyyden lisäksi, on tuon hiekkapetin toimivuus. Parhaiten siinä saa toimimaan, jos siihen saa siirtymään paljon eliöstöä elävästä kivistä. On koulukunta, joissa elävää kivi neuvotaan laittamaan pienten putkarakenteiden varaan ja korallihiekkä siten, että se juuri ja juuri ulottuu elävän kiven alureunaan. Tällöin heidän mielestäään ei pääse syntymään detrituskasaukset kiven juurille. Toiset taas laittavat elävän kiven suoraan hiekkapetin päälle ja tällöin se olisi olemassa ja sen päällä olevan peitelistan alla piilossa.

Yleisesti ottaen voidaan todeta, että paksun hiekkapetin toimivuus on parasta juuri pääaltaassa, koska elävää kivi saa suurin osa eliöstöstä. Myös biologinen kierto tapahtuu pääosin pääaltaassa, koska kalojen jätökset, ruoan tähteet yms. likaavat komponentit jäävät enimmäkseen sinne.

Paksua hiekkapetia tarvitaan pääaltaassa myös silloin, kun asukkaina on sellaisia kalojen, jotka tarvitsevat riittävän syvän hiekkakerroksen johto kaivautua.
Paksu hiekkapeti ala-altansa

Tämä on niiden harrastajien ratkaisu, jotka eivät tahdo ottaa “riskiä” mahdollisista hiekkapetin aiheuttamista ongelmista. Tässä vaiheessa on kyllä syytä todeta, että osalla harrastajista, joiden alta on yli vuoden, on ollut ongelmia. Toisaalta on harrastajia, joilla akvaario on toiminut ongelmittä vuosikausia, vaikka heillä onkin paksu hiekkapeti. Ongelmia saaneet ovat vähemmistöä.

Hiekkapeti sijoitetaan yleensä ala-altaan keskilokeroon, joka samalla toimii myös refugiona. Aikaisemmin juttua refugiosta on täältä (sivu 31).

Paksu hiekkapeti refugiossa

Kolmantena vaihtoehtona on erillinen refugioallas, jossa hiekkapeti sijaitsee. Tällaisessa ratkaisussa on vesi kiertää ensin ala-altaan ja sitten takaisin pääaltaaseen. Refugio voidaan tarvittaessa helposti sulkea pois kierrosta.

Erillisessä refugiossa voidaan virtausta säädellä paremmin ja näin myös hiekkapeti voi olla huomattavasti "mutaisempaa" eli hienojakoisempaa ainesta kuin ala-altaan yhteydessä. Ala-altaan läpi virtaa vesimääräähän on sen verran suuri, että sen mukaan lähtee paljon helpommin hienojakoista ainesta kuin erillisestä refugiossa, jonka läpi vesi ei suoranaistu virtaa.

Paksun hiekkapetin pyrkimys on eristää paksun elävänä, että se on käytännössä kaikenlaisia epäpuhtauksia. Tarvitaan hyvin runsas elööstö syöömään pohjalle syntyvää detritus. Kun käytössä on erillinen refugium, on ala-altaan pohja kokonaisuudessaan paikka, johon osa detritusesta joutuu, kun vesi kiertää usean seinämän yli tai ali. Ala-altaan pohjalta on harvoin poistettava. Osa detritusesta menee sitten refugioon ja pääaltaaseen, joista se poistuu biologisen toiminnan avulla.
Erillinen refugio on myös siitä erikoinen järjestelmä, että siellä kasvava makrolevä ei helposti siirry pääaltaaseen, vaikka ne ovat samassa kierrossa. Tämä pätee myös paljolti muuhinkin leviin. Esimerkkinä löytyy vaikkapa tapausta punalevvästä, joka rehotti refugiossa yli puoli vuotta, mutta ei levinnyt sieltä kuitenkaan pääaltaaseen. Refugion rakenteen on tietenkin oltava sellainen, että sinne valu ylivuodon kautta vain pintavesi, joten kiertoon pääsee vain hyvin kevyt aines.

Hiekkapetin käynnistyksen tai "päivittämisen" yhteydessä yhtenä mahdollisuutena on käyttää ns. elävää hiekkaa. Se on koralliruitalta otettua korallihiekkaa, joka sisältää pieneliöstöä ja bakteereita. Hiekka on pakattu muovipusseihin siten, että se säilyy kosteana eikä eliöstö pääse kuolemaan. Kyseisen elävän hiekka on vähintään yhtä kallista kuin elävä kivi.

Hiekkapeti voi sijaita sekä pääaltaassa että altaalassa. Jos refugiossa on käytössä hiekkapeti, ei altaalassa kannata hiekkaa laittaa, koska altaalasta pohjalta on helppo kerätä pois sinne laskeutunut detritus.

Tässä akvaariojärjestelmässä pääaltaassa on vain ohut hiekkakerros pohjalla. Alalassa taasen on paksu hiekkapeti keskimmäisessä lokerossa. Alalla sijaitsi pääaltaan takana olevan seinän takana olevassa kaappissa. Alla paikka, jalusta ja laitekaappi on suunniteltu ja toteutettu talon rakentamisen yhteydessä (Mikko Koskinen).
18. Akklimaatio

Akklimaatio tarkoittaa eliöstön totuttamista uuteen elinympäristöön. Kun esim. kala tuodaan kotiin, ei sitä noin vain voi pudottaa akvaarioon, koska kuljetuspussissa oleva vesi on varmaasti erilaista kuin akvaariossa oleva vesi. Seuraavat tekijät on otettava huomioon:

- lämpötila
- suolapitoisuus
- pH
- valo

Lämpötila

Suomen olosuhteet ovat sellaiset, että erityisesti talvella olisi oltaa erillinen lämpöä pitävä kuljetuskassili-laatikko, jolla hankittu kala, koralli tai vastaava kuljetetaan kotiin. On pidettävä huolta siitä, ettei lämpötila pääse laskemaan liian alas. Tarvittaessa on mukaan laitettava erillinen pussi tai pullo lämmintä vettä, joka ylläpitää lämpöä kuljetuskassissa.

Suolapitoisuus ja pH

Kalat yleisesti kestävät suolapitoisuuden ja pH:n vaihteluita hyvin, mutta on eläimiä kuten meri-meriä, jotka ovat hyvin herkkiä kaikille veden ominaisuuksien vaihteluille. Mikäli huolellista ja riittävän hidasta totuttamista ei suoriteta, menehty kyseinen eläin.

Tällaisissa tapauksissa akklimaatio tapahtuu näin: kun lämpötilaero on tasaantunut, aletaan akvaariovettä lisätä kuljetuspussiin hitaasti pieniä määriä verrallaan. Tämä tapahtuu esimerkiksi käyttämällä ns. tipaletkua, jolla akvaariovettä saadaan lisättyä pussiin todella hitaasti tippa verrallaan. Esimerkiksi meri-merihetutus on neljän tunnin ajaksi on kuljetuspussissa olevan veden määrän kaksinkertaistuttava.
Valo

Valon muutos on huomioitava erityisesti kivikorallien kohdalla. Ne korallit, jotka pystyvät liikkumaan hyvin, voivat itse siirtyä sopivaan valoon. Sellaiset korallit, jotka eivät itse pysty liikkumaan, on sijoitettava siten, etteivät ne pala. Liian voimakas valo on huomattavasti vaarallisempaa kuin heikko valo. Voimakkaaseen valoon joutunut, mutta heikohkoon valoon tottunut kivikoralli saattaa menehtyä muutamassa tunnissa. Jos ei tiedä millaiseen valoon uusi tulkas on joutunut, on turvallissempaa sijoittaa se ensin lähelle pohjaa heikompaan valoon. Yleisenä neuvonaa on annettu, että viikon oleskelu pohjan läheisyydessä on riittävä aika, jonka jälkeen uusi asukas voidaan siirtää suunnitellulle paikalleen.

Toinen ongelman esimerkki on mandariinikala, joka erittää itsestään myrkyllistä limaa kuljetusveteen. Jos kala on liian kauan kuljetuspussissa, se kuolee omaan myrkyynsä. Mandariinikala on parasta siirtää akvaarioon mahdollisimman pian.

Akklimaatioaikoja

Kaikissa tapauksissa oletetaan, että kuljetuspussin veden lämpötila on tasaantunut vastaamaan akvaarioveden lämpötila.

<table>
<thead>
<tr>
<th>Kivikorallit, pehmytkorallit ja kalat</th>
<th>Tunnin totutus. Pussiin lisätään n. 10 min välein 1/2 dl vettä. Muista kuitenkin, että esim. mandariinikala on poikkeus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merivuokot, isot viuhkamadot</td>
<td>Tiputusmenetelmällä totutusaika vähintään 2 tuntia.</td>
</tr>
<tr>
<td>Merissiilit, meritähdet, merimakkarat, kotilot ja simpukat</td>
<td>Tiputusmenetelmällä totutusaika vähintään 4 tuntia.</td>
</tr>
</tbody>
</table>
19. Ruokinta ja lisäravinteet

Ruoka on akvaarion asukkaille aivan yhtä tärkeää kuin meille itsellemme, joten ruokintaa ei saa laiminlyödä missään tilanteessa. Tosin on olennaisa esimerkiksi kaloja, jotka eivät syö korvaavaa ruokaa, mutta kylläkin piennieliöstöä, joka kasvaa akvaarioon laitetun ruoan ansiosta.

Jotkut saattavat antaa ruokaa vain pari kertaa viikossa, mutta tämä ei ole oikein ainakaan silloin, jos eliöstöön kuuluu kaloja, joita olisi syötettävä jopa kolmesti päivässä. Päivittäinen syöttäminen on kaikkein yleisin tapa ja kaloille, jotka tarvitsevat ruokaa useammin, voidaan käyttää ruokinta-auto maatia. Niukan ruokinnan ansiosta miltei "paketetaan" esimerkiksi levänsyöjät pitämään akvaario puhtaana.

Ruokinnan yhteydessä on helppo seurata kalojen kuntoa ja myös havainnoida ruoan riittävyyttä. Osa kaloista saattaa tulla näkyviin vain ruokinnan yhteydessä ja kalan aktiivisuuden muutokset näissä tilanteissa kertovat myös mahdollisista ongelmista.

Ruokatyypit ovat seuraavat:

- Kasviplankton (eng phytoplankton)
- Eläinplankton (eng zooplankton)
- Lihapitoinen ruoka
- Kasvispitoinen ruoka
- Ruokalisät

Eläinplankton on hyvin pienitä ruokaa (suurempaa kuitenkin kuin kasviplankton), joka muodostuu pääasiallisesti aivan nuorista älyriistä kuten katkaravuista. Tätä ruokaa syövät vedestä suodattavat eliöstöt ja pienet polyyt, joita on vaikka kivikorallieissa. Jotkut harrastajat kasvattavat tätä erillisessä reaktorissa, josta sitten annosteluvat sitä akvaarioon.

Kasvispitoinen ruoka sisältää normaalasti merilevää kuten esim. noria ja sitä syötteää levää syöville kaloille.

Ruokalisät ovat aineita, joita laitetaan ruoan joukkoon kasvattamaan sen ravintoarvoa.
Kalojen ruoka

Ne kalat, jotka eivät kelpuuta korvaavaa ruokaa, joutuvat etsimään ruokansa akvaariossa kasvavista levistä tai pieneliöstä, joten elävällä kivellä on erittäin tärkeä osa myös ruokinnan kannalta.

Syötettäviin ruokiin kuuluu esimerkiksi katkaravut, kampasimpukat, mustekalat, artemia, surviassääsket, mäti ja kuivattu levä.

Simpukat

Akvaarioissa pidettävät simpukat ovat melkein aina Tridacna -suvun lajeja. Niillä kaikilla on symbioottinen levä, jolta ne saavat pääasiallisen ravinnon, joten niitä ei suoranaisesti syötetä. Ne kuitenkin suodattavat akvaariovetta, joten veden tulisi sisältää niiden kaipaamia ravinteita.

Vedestä suodattava eliöstö

Toisille riittää ruokaa normaalistaa akvaariovedestä, mutta toiset vaativat, että siihen lisätään esimerkiksi kasvis- tai eläinplanktonia.

Liikkuvat selkärangattomat

Katkaravut, ravut, kääretähdet ja muut vastaavat liikkuvat selkärangattomat syövät samoja lihapitoisia ruokia, joita kaloille syötetään. Koska nämä eläimet ovat osittain suhteellisen pieniä, olisi hyvä, että osa lihapitoisesta ruoasta jauhetaan tehosekoittimella aivan pieneksi ja sekoitetaan veteen, jolloin pienimmätkin eliöt saavat osansa.
Korallit

Pehmytkorallit

Pehmytkorallit ovat pääasiallisesti fotosynteettisiä. Isopolyppiset korallit voivat syödä lihapitoista ruokaa (siksi kannattaa jauhia osa tehesekoittimella aivan murskaksi), mutta syöttäminen ei ole toisten mielestä aivan välttämätöntä, koska pääraavinto tulee kuitenkin symbioottiselta levältä. Pienopolyppiset yksilöt kuten Sinularia ei tiettävästi syö mitään tunnettua ruokaa, mutta todennäköisesti hyötyy hyvin pienestä eläinplankton -tyypistä ravinnosta, jota esimerkiksi pieni-polyppiset kivikorallit myös käyttävät ravintonaan.

Pehmytkoralleista löytyy laajikkeita, joilla ei ole symbioottista levää, joten niitä pitää syöttää erikseen. Näiden korallien hoitaminen voi olla hieman vaikeaa ja vaatii harrastajalta riittävää paneutumista niiden ruokintaan.

Isopolyppiset kivikorallit

Nämä korallit ovat fotosynteettisiä ja saavat pääasiallisen ravintonsa symbioottiselta levältä. Jotkut ovat sitä mieltä ettei niitä tarvitse syöttää, mutta tästä asiasta löytyy tietänyt lainvastainen ja perusteltu käsitys. Symbioottinen levä ei ole pelkästään antava osapuoli vaan sen isännän, korallin, on annettava sille ruokaa, jota saa akvaariovedestä. Tämä ruoka on proteiinia joko lihaisana ruokana tai aminohappona, jota on esimerkiksi bakteereissa, jotka leijuvat vedessä tai ovat detrituksen pinnalla.

Useimmat isopolyppiset korallit kuten kuplakorallit, aivokorallit ja vastaavat syövät vedestä pientä liharuokaa.

On muttama ei-fotosynteettinen koralli, esim. aurinkokoralli, jonka ruokinnasta on pidettävä tarkkaa huolta, jotta se pysyy hengissä.

Pienipolyppiset kivikorallit

Nämä korallit ovat fotosynteettisiä ja saavat pääasiallisen ravintonsa symbioottiselta levältä. Erityisesti näiden kohdalla väitetään, ettei niitä tarvitse syöttää, mutta tästäkin asiasta on täysin päinvastainen ja perusteltu käsitys. Nämä korallit todennäköisesti hyötyvät erityisesti eläinplanktonista, jota niille voidaan syöttää veteen sekoittettuna. Jos isopolyppisille koralleille syötetään "isokokoista" liharuokaa, mikseivät myös pienipolyppiset kivikorallit sōisi "pienikokoista" liharuokaa eli eläinplanktonia?

Lisäravinteet

Myynnistä löytyy suuri määrä erilaisia lisäravinteita, joista osaa voidaan pitää myös ruokana. Ne ovat joko pakasteena, kuivattuna tai nestemäisessä muodossa.

Eläin- ja kasviplanktonia voidaan pitää ruokana, mutta ne, jotka ovat sitä mieltä, ettei koralleja tarvitse ruokkia, pitää niitä lisäravinteina. On olemassa myös useita nestemäisiä ”koralliruokia” (esimerkiksi Salifert) ja erilaisia vitamiineja.

Monet lisäravinteista ovat varmaankin tarpeellisia, mutta monet näistä ovat myös jokseenkin turhia. Harrastajien olisi syytä tutkia niitä kriittisesti ja hankki niitä harkitsemalla. On myös muistettava, että annosteluohjeet tarkoittavat määriä allasta kohden – joten jos käyttää kahta erilaista, mutta samantyyppistä ruokaa tai lisäravinnetta, on niiden määrä tuolloin puolitettava, jotta kokonaismääriä pysyy oikeana.
20. Asiat voivat mennä pieleen

Asiat voivat mennä pahastikin pieleen ja syitä voi olla monia. On kuitenkin hyvä vilkaista tässä listattuja asioita, koska niiden joukosta löytyy varmasti sellaisiakin asioita, joiden välttäminen saattaa pelastaa katastrofilta.

Ensinnäkin olisi hyvä lukea seuraavat kolme Eric Boremannin artikkelia myyteistä ja niiden todenperäisyksistä:

Mything the Point: Part One:

Mything the Point: Part Two:

Mything the Point, Part Three: Conlusion:

Levät

Erilaisten levien kasvua tulisi seurata ja niiden runsastuessa miettiä mistä se voisi johtua. Akkinäisiä toimia tulisi välttää ja tärkeintä olisikin löytää välttämätöntä levämistä.

Rihmalevä

Tämä levä on helppo tunnistaa, koska se kasvaa useita senttejä pitkinä rihmaisina kasvustoina. Tämä levä on haitallista koralleille. Joissakin tapauksissa se voi tuhahduttaa korallin kasvamalla sen päälle tai aiheuttaa korallin kasvun hidastumista ehkä myös kemiallisesti tai jollakin muulla tavalla. Levä tunkeutuu korallin näkyvillä osiin.

Syy levänkasvuun johtuu yleensä akvaarioveden liian suuresta ravinne- tai pois-esta. Liikaravinteet ovat tavallisesti nitraatta tai fosfaattia, mutta eivät kuitenkaan aina.

Syanobakteeri eli sinilevä

Tämän lääkitysen aikana on poistettava aktiivihiihi altaasta ja vaahdotin pysäytettävä.

Syanobakteeristä on ollut juttua aikaisemmin täällä (sivu 69).
Piilevät

Piilevät ilmestyy akvaarion lasiin pieninä ruskeina pisteinä, joita on hankala poistaa. Niitä on myös kivissä. Ne eivät irtoa lasista levämagneettiilla vaan on käytettävä raappaa.

Akvaariolasin peittävä viherlevä

On aivan normaalia, että lasiin ilmestyy ohut kerros vihreää levää, jota kotilot ja jotkin kalat, esimerkiksi keltasilmävälskärin, mielellään syövät.

Se, kuinka nopeasti tätä levää ilmestyy lasin pinnalle, riippuu useasta tekijästä kuten valon määrästä ja ravinteista. Normaali liipustusväli on 2 - 3 päivää. Jos lasia on puhdistettava päivittäin kertoo se veden liiasta ravinteainemäärästä. Salifertin Phosphate Eliminator on hyvä apu myös tässä tapauksessa.

Vältettävä kalat

Alla on pieni taulukko niistä kaloista, jotka saattavat aiheuttaa kovastikin harmia ja niitä tulisi välttää. Osaa voidaan toki pitää omassa erillisessä altaassaan, jossa ne ovat turvassa vaikkapa niitä syöviltä pedoilta jne.

<table>
<thead>
<tr>
<th>Anthias -suvun koruhvenet</th>
<th>Hyvin vaativia hoidottavia. Tulevat toimeen parhaiten suurissa akvaariossa, joissa niitä syötetään useita kertoja päivässä.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hait</td>
<td>Liian suuria akvaarioihin.</td>
</tr>
<tr>
<td>Keisarikalat</td>
<td>Kasvavat suhteellisen isoiksi ja syövät koralleja. Jotkut harrastajat ovat onnistuneet pitämään niitä ilman, että ne olisivat aiheuttaneet ongelmaa koralleille, mutta toiset taas eivät.</td>
</tr>
<tr>
<td>Leukakalat</td>
<td>Kalolle on pystyttävä tarjoamaan riittävän syvä hiekkapeti, johon kaivautua.</td>
</tr>
<tr>
<td>Meriahvenet</td>
<td>Kasvavat liian isoiksi ja syövät muita kaloja.</td>
</tr>
</tbody>
</table>

Asiat voivat mennä pieleen
Asiat voivat mennä pieleen

<table>
<thead>
<tr>
<th>Merikokit</th>
<th>Tarvitsevat riittävän ison akvaario, jossa on riittävästi elävää kiveä, joiden pinnalta ne voivat etsiä pienelikästä syötäväksi. Syövät vain elävää ravintoa. 250 litrainen akvaario on minimikoko, jolloin siihen saadaan riittävästi elävää kiveä.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merineulat</td>
<td>Näiden on vaikea taistella ruoasta muiden kalojen kanssa. Soveltuvat parhaiten omaan aakaarioon merihyvinen.</td>
</tr>
<tr>
<td>Mureenat</td>
<td>Voivat syödä pienempiä akvaarioissa olevia kaloja. Jokut lajit kasvavat isolksi, joten ne eivät sovi kuin suhteellisen suurin akvaarioihin.</td>
</tr>
<tr>
<td>Papukaijakalat</td>
<td>Erittäin tunnettuja korallin syöjiä.</td>
</tr>
<tr>
<td>Perhokalat</td>
<td>Useimmat syövät koralleja ja ovat vatavativa hoidettavia. Poikkeuksena on pinsettikala, joka on "riuttaturvallinen".</td>
</tr>
<tr>
<td>Säppikalat</td>
<td>Melkein kaikki ovat aggressiivisia. Eivät sovi riutta-akvaarioon.</td>
</tr>
<tr>
<td>Skorpionisimpit</td>
<td>Syövät muita pienempiä kaloja. Niillä on myös myrkylliset eväpiikit, joita on syytä varata.</td>
</tr>
<tr>
<td>Tulinuolikko</td>
<td>Arka kala joka käröi aggressiivisten kalojen seurassa.</td>
</tr>
<tr>
<td>Valencienna sp. -suvun tokot</td>
<td>Eivät aina hyyksy korvaavaa ruokaa ja elleivät löydy syötävää riittävästi pohjajiekaa. Voivat näköväntä näkää. Voivat aiheuttaa ongelmia pohjalla oleville koralleille, joiden päälle pudotettavat suodattamaansa hiekkaa.</td>
</tr>
</tbody>
</table>

Vältettävät selkärangattomat

Jotkin selkärangattomat eivät sovi lainkaan riutta-akvaarioon. Toiset selkärangattomat vaativat niin tarkkaa hoivaa, että ne sopivat vain pidemmälle ehtineille harrass- taijille.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Goniopora sp.</td>
<td>Useimmat eivät selviydy kuutta kuukautta pitempään akvaarioissa. Toiset saattavat elää vuosikaudella. Ei ole tarkkaa tiedossa, miksi ne eivät selviydy. Sanotaan, että veden olisi oltava "liikeis" eli silinä tulisi olla selvästi leijuvia partikkeleita.</td>
</tr>
<tr>
<td>Lima scabra kampasimpukka</td>
<td>Ei omaa symbioottista levää kuten Tridacna -simpukat ja tarvitsee siksi kasvimplantonjistoja ruokaa selvitäkseen.</td>
</tr>
<tr>
<td>Merietanat</td>
<td>Useimmat eivät sovi riutta-akvaarioihin ruokailutottomustensa vuoksi. Ne on muokattava helposti pumppujen sisään.</td>
</tr>
<tr>
<td>Meriomena</td>
<td>Suodattavat ruokansa vedestä, joten sen olisi oltava oikeanlaista. Voivat myrkyttää akvaarioveden ja näin tappaa kalat, jos tulevat pahasti häirityksiä tai jos kuolevat.</td>
</tr>
</tbody>
</table>
Meritähdet

Suurin osa meritähdistä ei ole riuttaturvallisia. Siksi olisi oltava tarkkana niiden hankinnassa.

Merivuokot

Isot mattomaiset merivuokot tarvitsevat todella kovan valomäärän ja lisäksi saattavat liikkua ympäri akvaariota polttaen muita koralleja. Sopii parhaiten omaan akvaarioonsa.

Mustekala

Syö kaloja ja karkaa todella helposti hyvinkin peitetystä akvaarioista. Vain erikoisakvaarioihin.

Rhynchocinetes durbanensis rapu

Syö akvaariokavereitaan kuten simpukoita ja polyppeja.

Tämä *Lima scabra* kampasimpukka on kaunis katseltava, mutta vaatii riittävästi kasviplanktonia ravinnokseen.
21. Korallit

Koralliruutun tärkeimmät ja näyttävimmät eliot ovat koralleja. Niitä löytyy hyvin suuri määrä erityyppisiä ja erilaisia yksilöitä. Eri lajien tunnistaminen saattaa olla vaikeaa tai jopa mahdotonta. Esimerkiksi joidenkin kivikorallien tunnistamista vaikeuttaa se, että sama koralli on kasvutavaltaan erilainen riippuen siitä, missä pain riuttaa se kasvaa. Pehmytkorallien kohdalla tunnistaminen on välillä melkein toivotonta. Korallien pääjaottelu tehdään usein karkeasti kolmeen ryhmään:

- pehmytkorallit
- kivikorallit
- muut

Pehmytkorallit ja vuokot

Pehmytkorallit ovat rakentuneet pääasiassa kalsiumkarbonaatista. Tämä kalkkipitoinen materiaali sijaitsee korallin organisissa rakenteissa eli sillä ei ole erillistä “rankaa” niin kuin kivikoralleilla.

Pehmytkorallit voidaan jakaa kahteen pääryhmään – sellaisiin joilla on symbioottinen levä zooksantelli, ja sellaisiin, joilla ei ole. Symbioottisen levän omalla ololla omaksuvat lajit viihtyvät parhaiten suurena, suuren valomäärän akvaariossa. Normaalisti ne kasvavat hyvinkin nopeasti ja niitä joudutaan harventamaan aika-ajoineen.

Pehmytkoralleista on helppo leikata fragmentteja (pistokkaita), joista saadaan kasvatettua uusia yhdyskuntia. Tämän pääsee koralleihin, joillakin on symbiootettuna levää.

Aloittelijan kannalta symbioottisen levän omamattavat pehmytkorallit ovat juuri oikeita koralleja, joilla aloittaa harrastus. Ne ovat hyvinkin hoitomattavia ja kivikorallit ja ne ovat myös erittäin kauniita. Ainoa niiden "heikkous" on se, että ne eivät siedä suolapitoisuuden suuria muutoksia. Suolapitoisuus ei saisi koskaan laskea alle $S = 30$ kuin heikittäin. Suolapitoisuutta on tarkasteltava säännöllisesti, koska se pyrkii hiipimään alaspin (aihetta käsitelty sivulla 79)

Pehmytkorallit, joilla ei ole symbioottista levää, ovat erittäin vaikeita huollettavissa ja niitä on ruokittava säännöllisesti planktonruoalla. Nämä korallit soveltuvat vain kokeneille harrastajille.

Alla on esitetty joukko erilaisia pehmytkoralleja ja vuokkoja. Ne ovat vain joitakin esiemerrejä suuresta valikoimasta. Mainittakoon vielä, että Indopasifinen merialue (eng Indo-Pacific ocean) käsittää Tyynen ja Intian valtameren Kaakkois-Aasiassa olevat rannikkoalueet.
Vuokkokala ei aina tarvitse isännökseen vuokkoa vaan se voi ottaa kodikseen myös pehmytkorallin – tässä on kyseessä *Sarcophyton sp.* (Tatu Vaajalahti).

Valonmäärä on kerrottu seuraavasti:
- ⭐⭐⭐ Suuri valontarve
- ⭐⭐ Suurehko valontarve
- ⭐ Matala valontarve

Virtaus on kerrottu seuraavasti:
- ☢☢☢ kova virtaus
- ☢☢ kohtuullinen virtaus
- ☢ vähäinen virtaus

<table>
<thead>
<tr>
<th>Anthelia spp., 10 cm, Indopasifinen merialue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valo: ⭐⭐⭐</td>
</tr>
<tr>
<td>virtaus: ☢☢</td>
</tr>
<tr>
<td>Voi olla herkä veden laadun tai valon vaihteluille, esimerkkinä aktiivihiilen käytön aloittaminen tai sen määrän lisäys. Syö mahdollisesti veteen liuenneita ravinteita. Polyypit eivät vetäydy sisään.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Xenia spp., 10 cm, Indopasifinen merialue (kuva Sam Salonen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valo: ⭐⭐⭐</td>
</tr>
<tr>
<td>virtaus: ☢☢</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capnella spp., Indopasifinen merialue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valo: ⭐⭐⭐ tai ☢☢☢</td>
</tr>
<tr>
<td>virtaus: ☢☢</td>
</tr>
</tbody>
</table>
Clavularia sp., Indopasifinen merialue, Punainen meri
Valo: ★★★
virtaus: ★★★★★
Lajinmääritys on hyvin vaikeaa, koska vastaavia samanlaisia yksilöitä on hyvin paljon. Kaikkia näitä on helppo pitää. Sillä on putkimaiset suojakupit, joihin polyypit voivat kokonaan vetäytyä.

Sarcophyton tenuispiculatum, 50cm, Indopasifinen merialue (kuva Tatu Vaajalahti).
Valo: ★★★
virtaus: ★★ tai ★★★
Tämä on erittäin kestävä ja helppohoidon laji. Se voi kasvaa halkaisijaltaan 50 cm kokoiseksi. Se on pienennä vaikea tunnistaa, mutta kasvattaa itselleen hyvin paksun jalank, josta se on helppo tunnistaa.

Sinularia dura, Indopasifinen merialue
Valo: ★★ tai ★★★
Virtaus: ★★ tai ★★★
Voi olla herkkä voimakkaalle UV-säteilylle. Se on hyvin yleinen, kestävä ja helppohoidon. Muodostaa lehti- tai kuppimaisia yhdyskuntia, joissa on siellä täällä pieniä polyyppeja.

Lobophytum sp, Indopasifinen merialue (kuva Marko Haaga)
Valo: ★★★ tai ★★★
Virtaus: ★★ tai ★★★
Muodostaa keskisuuria tai suuria ruskeita tai keltaisia yhdyskuntia. On kestävä, yleinen ja helppohoidon laji. Luonnossa saattaa löytyä useiden metrien läpimittaisia yhdyskuntia.

Tubipora musica, Indopasifinen merialue
Valo: ★★★
Virtaus: ★★★
Vaikea pidettävä, koska vaatii hyvin vähäravinteisen veden sekä erittäin voimakkaan valon. Veden virtauksen on myös oltava voimakas. Näyttää kivikoralilta, mutta ei ole sellainen.

Zoanthus spp., trooppiset meret. (kuva Sam Salonen)
Valo: ★★★
Virtaus: ★★★★
Esiintyy yleensä matalissa vesissä. On vaikea tunnistaa eri lajeja toisistaan, mutta kaikki ovat kestäviä ja helppohoidoisia. Ne lisääntyvät suvuttomasti kasvaen kauniina mattoina kiville.

Discosoma spp., 10 cm, Indopasifinen merialue
Valo: *
Virtaus: ★ tai ★★★
Paljon erilaisia lajeja, joita on vaikea erottaa toisistaan. Valon määrän lisäys aikaisemmin, että koralli joko kutistuu tai laajenee enemmän. Lisääntyy suvuttomasti ja saattaa levitä nopeasti akvaarioissa.
"Anemonia" cf. majano, 1-3 cm, Indopasifinen merialue.

Valo: ★★★
Virtaus: ☞ ✔ tai ☞ ☞

Entacmaea quadricolor, 40cm, Indopasifinen merialue.

Valo: ★★★
Virtaus: ☞ ☞

Virtauksen olisi oltava tasaista. Tällä vuokolla on "pullistumat" lonkroiden päässä ja sillä on voimakas polte, joka vahingoittaa naapurieliöitä, jotka eivät pysty liikkumaan. Sopii parhaiten omaan akvaarioonsa kodiksi vuokkokaloille. Se on yksi kestävimmistä vuokoista. Tavallisesti se on vähittäin ruskea tai vihertävän ruskea. Elää tavallisesti kiinnittyneenä korallien oksien joukkoon.

Aiptasia sp., 6 cm, trooppiset ja subtrooppiset meret (kuva Rauno Räsänen)

Valo: ★★ tai ★★★
Virtaus: ☞ ☞

Kivikorallit

Korallit olisi akvaarioon tuotaessa ensin syytää laittaa pohjalle, mikäli ei tiedetä kuinka voimakkaassa valossa ne aikaisemmin ovat kasvaneet. Pohjalla ne ovat ensin alkuun vähäisemmässä valossa eikä niiden tällöin pitäisi tallentaa valoista. Viikon kuluttua ne voidaan siirtää halutulle kasvupaikalle.

Kaiikki kivikorallit vaativat erittäin hyvän veden lähipyörän ja kalsiumin lisäämisen, koska ne tarvitsevat sitä kalkkirunkonsa kasvattamiseen.

Pocillopora damicornis, Indopasifinen merialue (kuva Marko Haaga)

Valo: ★★★
Virtaus: ★★★

Stylophora pistillata, tricolor Indopasifinen merialue (kuva Marko Haaga)

Valo: ★★★
Virtaus: ★★★

Tämä on kestävä ja suhteellisen helpohoidon.Voidaan lisätä helposti fragmenttipaloista. Muodostaa erilaisia yhdyskuntamuotoja valosta ja virtauksesta riippuen. Tavallisesti se on väriltään keltainen tai vihreä ja toisinaan myös pinkki.

Montipora spp., Indopasifinen merialue.

Valo: ★★ tai ★★★
Virtaus: ★★★ tai ★★★★★ kasvupaikasta riippuen

Tätä löytyy oksamaista ja levymäistä muotoja. Helppohoidon ja saa hyvin lisättävä fragmentteista. Eri lajeja on vaikea erottaa toisistaan.

Acropora spp., Indopasifinen merialue (kuva Kimmo Sukanen).

Valo: ★★★
Virtaus: ★★★

Pavona cactus, Indopasifinen merialue.

Valo: ★★★
Virtaus: ★★★

<table>
<thead>
<tr>
<th>Korallin nimi</th>
<th>Kunnostusalue</th>
<th>Valo</th>
<th>Virtaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliofungia actiniformis
Indopasifinen merialue.</td>
<td></td>
<td>••• tai ••••</td>
<td>•• tai ••</td>
</tr>
<tr>
<td>Fungia spp.
14–30 cm, Indopasifinen merialue.</td>
<td></td>
<td>•••</td>
<td>•• tai ••••</td>
</tr>
<tr>
<td>Galaxea fascicularis
Indopasifinen merialue.</td>
<td></td>
<td>••</td>
<td>•• tai •••</td>
</tr>
<tr>
<td>Tämä koralli omaa pitkälle heiluvat tuntoelimet, jotka polttavat liian läheisillä olevat naapurit, joten se sijoittettava riittävän etäälle muista. Hyvissä oloissa tällä suvulla on kestävä ja helppohoitoinen koralli. Tämä koralli omaa pitkälle heiluvat tuntoelimet, jotka polttavat liian läheisillä olevat naapurit, joten se sijoittettava riittävän etäälle muista. Hyvissä oloissa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydnopora spp.
Indopasifinen merialue.</td>
<td></td>
<td>••••</td>
<td>•• tai ••</td>
</tr>
<tr>
<td>Caulastrea furcata
Indopasifinen merialue.</td>
<td></td>
<td>•••</td>
<td>•• tai ••</td>
</tr>
<tr>
<td>Goniastrea spp.
Indopasifinen merialue (kuva Sam Salonen).</td>
<td></td>
<td>•••</td>
<td>•• tai ••</td>
</tr>
<tr>
<td>Tämä on erittäin kestävä ja helppohoitoinen, vaatii huolellisen huonon oikean alueen ja joskus vähentää vuorovesiakvaarioon.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Korallit
<table>
<thead>
<tr>
<th>Korallit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montastrea curta, kaikkialla tropiikissa.</td>
</tr>
<tr>
<td>Valo: 3 3 3</td>
</tr>
<tr>
<td>Virtaus: 3 3 3 tai 3 3 3</td>
</tr>
<tr>
<td>Tämä on kestävä ja helppohoitoinen koralli, jonka tulee saada valoa joka puolelta, koska varjoon jäävää osa vaikastuu ja kuolee. Väriltään ne ovat vihreitä tai keltaisen vihreitä. Avaa tuntoelimensä ruokailua varten yllä.</td>
</tr>
</tbody>
</table>

| **Trachyphyllia geoffroy**, Indopasifin merialue (kuva Kimmo Sukanen). |
| Valo: 3 3 tai 3 3 3 |
| Virtaus: 3 3 tai 3 3 3 |

| **Euphyllia sp.**, Indopasifin merialue (kuva Sam Salonen). |
| Valo: 3 3 tai 3 3 3 |
| Virtaus: 3 3 tai 3 3 3 |

| **Catalaphyllia jardinei**, Indopasifin merialue. |
| Valo: 3 3 tai 3 3 3 |
| Virtaus: 3 3 tai 3 3 3 |
| Helppohoitoinen, mutta pitäisi sijoittaa hiekkapohjalla meriheinän tai Caulerpan joukoon. Ei saa laittaa muiden korallien joukkoon elävästä kivestä muodostuvan riuttarakenteeseen. Sopisi ehkä hyvin valaistuun refugioon tai aivan omaan erilliseen akvaarioon. Tarvitsee muita koralleja ravinteikkaamman veden. |

| **Plerogyra sinuosa**, Indopasifin merialue. |
| Valo: 3 3 tai 3 3 3 |
| Virtaus: 3 3 tai 3 3 3 |

| **Turbinaria reniformis**, Indopasifin merialue (kuva Kimmo Sukanen). |
| Valo: 3 3 tai 3 3 3 |
| Virtaus: 3 3 tai 3 3 3 |
| Kestävä ja helppohoitoinen, mutta tarvitsee paljon kasvutilaa. Tarvittaessa on poistettava sen pinnalle laskeutunut detritus. |

| **Merulina sp.**, Indo-Tyynimeri ja Punainen meri (kuva Marko Haaga). |
| Valo: 3 3 3 |
| Virtaus: 3 3 |
| Vaikahko hoidettava ja tarvitsee riittävän kasvutilan koska sillä on 6-7 cm pitkät heiluvat tuntoelimet jotka polttavat liian lähellä olevat naapurit - se siis on sijoitettava riittävän etäälle muista. |
Selkärangattomat + muut

Yllä esimerkkejä elävän kiven mukana tulluista ravuista (Aleksandr Pyndyk)

| **Lysmata amboinensis**, 15 cm, Indopasifinen merialue. |

| **Lysmata debelius**, 4 cm, Indopasifinen merialue. |

| **Lysmata wurdemanni**, 5 cm, Karibia, Itäinen Atlantti. |
Stenopus hispidus, 9 cm, Trooppiset meret.

Clibanarius tricolor, 2-6 cm, Australia.

Neopetrolisthes ohshimai, 2-3 cm, Indopasifinen merialue.

Tridacna maxima, 35 cm, Indopasifinen merialue, Punainen meri

Tridacna crocea, 19 cm, Keskinen Tyynimeri.

Holothuria atra, 60 cm, Indopasifinen merialue, Punainen meri.

Acanthopleura granulate

Riuttaturvallinen. Tulee akvaarioihin elävän kiven mukana. Nämä ovat pieniä nilviäisiä, jotka liikkuvat etupäässä yöaikaan ja syövät levää kivistä.
<table>
<thead>
<tr>
<th>Polycarpa aurata, 10 cm, Indopasifinen merialue</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cinachyrella spp., Indopasifinen merialue.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhteellisen pieniä pallomaisia sieniä. Tarvitsee alhaisen valaistuksen. Syö suodattamalla vettä ja tarvitsee erittäin pieniä orgaanisia hiukkasia ja pienen pientä planktonia.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pseudaxinella sp., Karibianmeri.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarvitsee alhaisen tai keskisuuren valaistuksen ja keskisuuren tai kovan vaihtelevan virtauksen. Syö suodattamalla vettä ja tarvitsee erittäin pieniä orgaanisia hiukkasia ja pienen pientä planktonia. Suhteellisen vaikea pitää ja tarvitsee akvaarion jossa vaahdotus toimii hyvin. Tätä, kuten muitakaan sieniä, ei saa siirtää akvaarioon siten, että se pääsee kosketuksiin ilman kanssa.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fromia indica, 9 cm, Indopasifinen merialue.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ophiolepis superba, 25 cm, Indopasifinen merialue, Punainen meri (kuva Rauno Räsänen).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mespilia globulus, 7,5 cm, Keskinen Tyynimeri.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Protula bispinalis, 30 cm, Lääntinen Tyynimeri</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Megalomma sp., 20 cm, Indopasifinen merialue.</th>
</tr>
</thead>
</table>
22. Kalat

Kalat ovat riutta-akvaariossa vain pieni, mutta näkyvin osa eliöstöä. Kalojen hankinnassa olisi otettava tarkkaan huomioon niiden soveltuminen kyseessä olevaan akvaarioon. Tämä vaihe olisi mietittävää jo aivan merivesiakvaariohin hankinnan alkuvaiheessa, koska altaan koko ja muut akvaarioon sijoitettavat eliöstöt riippuvat hyvin paljon sinne laitettavasta kalosta.

Olisi siis pitäydyttävä alussa mietityissä kalalajeissa, mutta toki vaihtoja voidaan tehdä vastaavanlaisesta lajista toiseen, kunhan alun perin ajateltu tasapaino säilytä.

Erityisesti sellaiset harrastajat, jotka siirtyvät makeavesia akvaariosta merivesiakvaarioihin, haluaisivat ostaa (liian) suuren määrän kaloja. Lisäksi he haluaisivat ostaa useita samaa lajia olevia yksilöitä, mutta on erittäin tärkeää selvitää mitkä kalat sopivat kyseiseen akvaarioon. Tämä vaihe olisi mietittävä jo akvaariossa hankinnan alkuvaiheessa, koska kalalaisten kehitys ja muut akvaarioon sijoitettavat eliöstöt riippuvat paljon kalasta.

Mikä tekijä vaikuttaa soveltuvuuteen?

- Syökö kala akvaariossa olevia selkärangattomia tai muita kaloja?
- Tuleeko kala toimeen muiden akvaariossa olevien kalojen kanssa?
- Onko se aikuisena liian suuri akvaarioon?
- Pystyykö kalalle järjestämään oikealta ruokaa ja elinympäristön?
- Onko kala sellainen, että se osaltaan hoitaa akvaarion "puhtautta"?

Jos akvaariossa on riittävästi eläviä kivettä, voidaan useimmat kalat ehdottaa myös sellaisiin akvaarioihin, joita on piilotettu yhteen kesken. On tärkeää selventää, mitkä kalat sopivat kyseiseen akvaarioon.

On erittäin tärkeää, että kalat ovat yhteensopivia. Eukariotit ovat hyvin yhteensopivia, mutta on tärkeää selvitää, mitkä kalat sopivat akvaarioon.

Jotkut kalat syövät sellaisia ruokia ja se on tärkeää selvitää. Esimerkiksi moni välskärikala käyttää kaltaa ja ”läimivetä” toisiaan.

Talalla olevat vat kaloja ja sellaiset elävät yhdessä. Tämä on tärkeää, että kalat ovat yhteensopivia.
Yksi hoidon kannalta tärkeä asia on, että osa hankituista kalosta osaltaan hoitaa myös akvaarioin puhtautta. Olisi hyvä, että löytyisi riittävä määrä levänsyöjiä vastapainoksi niille, jotka syövät vain syötettävää ruokaa.

Yleisesti ottaen riutta-akvaarioon voi ottaa huomattavasti vähemmän kaloa kuin vastaavan kokoiseen makeavesiakvaarioon. Tämä johtuu siltä, että riutta-akvaariossa vedenvaihtojen määrä on paljon pienempi ja syntyvät jätteet poistetaan biologisella suodatuksesta ja valkuaisainеваahdottimella, kun taas makean veden akvaarioista ne poistetaan mekaanisen suodatuksen ja surften vedenvaihtojen avulla.

Nyrkkisääntönä voidaan sanoa, että vuoden käytössä olleeseen riutta-akvaarioon voidaan sijoittaa 5-7 cm kokoinen kala kutakin 40 litraa kohden, joten 400 litraisessa akvaarioissa voi olla maksimissaan 10 kpl 5-7 cm kokoisia kalojia.

Alla on lyhyesti esitetty erilaisia kalojia. Esimerkit eivät ole suosituksia ja joidenkin kalojen saatavuus riippuu paljon akvaarioliikkeen hankintalähteistä ja ajankohdasta. Välillä joku kala saattaa olla "muodissa" ja sitä saa helposti, kun taas jonkin toisen kalan saaminen saattaa olla täysin mahdotonta kysynnän puutteen vuoksi.

Mureenat

LAHKO ANGUILLIFORMES, ANKERIAKALAT

HEIMO MURAENIDAE

Yleensä mureenat kasvavat 60–100 cm pituisiksi. Ne syövät etupäässä kalojia ja äyriäisiä, mutta silti moni laji sopeutuu hyvin elämään akvaariossa ja ne ovat hyvin kestäviä asukkeita. Ne tarvitsevat riittävän suuren akvaarion ja hyvät luolat piilopaikoiksi elävän kiven seasta. Lisäksi akvaariossa on oltava sisäänpäin käännetty reunat tai katto, jotta ne eivät pääse livahtamaan ulos akvaariosta.

|------------------------|------------------|----------------------------------|
Uropterygius conoclor

Skorpionisimput

LÄHKO SCORPAENIFORMES, SIMPPUKALAT
HEIMO SCORPAENIDAE

Dendrochirus biocellatus

Dendrochirus brachypterus

Dendrochirus zebra

Pterois lunulata

Pterois volitans

Pyöröpäät, keijukalat, keijuahvenet, pomat, pennat, meriahvenet ja saha-ahvenet

LAHKO PERCIFORMES, AHVENKALAT
HEIMO PLESIOPIDAE, PYÖRÖPÄÄT
HEIMO GRAMMATIDAE, KEIJUKALAT
HEIMO PSEUDOCHROMIDAE, KEIJUAHVENET
ALAHEIMO LIOPROPOMATINAE, POMAT
HEIMO NEMIPTERIDAE, PENNAT
ALAHEIMO SERRANINAE, SAHA-AHVENET

Näistä kaloista osa on yleensä rauhallisia, mutta ne voivat tulla hyvin reviiritietoisiksi ja puolustaa aggressiivisesti omaa aluettaan. Jos akvaarioon laitetaan useampi kuin yksi yksilö samaa lajia, on ne lisättävä samanaikaisesti tai muuten syntyy kovia taisteluita. Kaloille on tarjottava riittävästi pillopaikkoja.

<table>
<thead>
<tr>
<th>Kala</th>
<th>Kuva</th>
<th>Kuvaus</th>
</tr>
</thead>
</table>
Pseudochromis paccagnellae
herttuakeijuahven
- **Koko:** 8 cm, Indopasifinen merialue.
- **Riutatutuus:** Riuttaturvallinen. Puolustaa aggressiivisesti aluettaan jopa 2-3 kertaa suuremmilla kaloilla. Syö puhdistajakatkaravut yms. ja huolehtii myös liiallisista viuhkamadoista.

Liopropoma rubre
rubiinipoma
- **Koko:** 8,5 cm, Karibia.

Scolopsis fernatus
ohjaspenta
- **Koko:** 20 cm, Indopasifinen merialue.

Serranus baldwini
lyhtymeriahven
- **Koko:** 7 cm, Karibia.

Serranus tabacarius
tupakkasaha-ahven
- **Koko:** 18 cm, Karibia.

Serranus tortugarum
kalkkisaha-ahven
- **Koko:** 7 cm, Karibia.

Kardinaaliahvenet
LAHKO PERCIFORMES, AHVENKALAT
HEIMO APOGONIDAE, KARDINAALIAHVENET

Nämä kalat sopivat rauhalliseen akvaarioon, jossa tulee olla riittävästi eläviä kiveä ja koralleja, joiden joukkoon kala pystyy tarvittaessa vetäytymään piiloon.

Apogon erythrinus
- **Koko:** 7 cm, Indopasifinen merialue
Perhokalat

Lahko Perciformes, Ahvenkalat

Heimo Chaetodontidae, Perhokalat

Sisällys

- **Perhokalat**
- **Hemitaurichthys polylepis**
- **Sphaeramia nematoptera**
- **Apogon spp.**
- **Pterapogon kauderni**
- **Apogon leptacanthus**

Apogon spp.

Black Striped Cardinal

13 cm, Tahiti.

Riuttaturvallinen. Sopii akvaarioon kaikkein parhaiten yksin tai pariskuntaana. Syö lihapitoista ruokaa.

Apogon spp.

Flame Cardinal

10 cm, Karibia.

Apogon spp.

Black Cardinal fish

10 cm, Intian Valtameri.

Apogon leptacanthus

viiruposkikardinaali-ahven

6 cm, Intian Valtameri.

Pterapogon kauderni

helmikardinaali-ahven

7 cm, Indopasifinen merialue.

Riuttaturvallinen. Tätä kalaa ei tulisi pitää parvena kuin isoissa akvaarioissa, koska se saattaa olla aggressiivinen samanlaisia kalojia kohtaan. Pariskuntaa voi pitää pienessäkin akvaarioissa. Syö lihapitoista ruokaa.

Sphaeramia nematoptera

pyjamakala

7 cm, Indopasifinen merialue, Korallimeri.

Hemitaurichthys polylepis

Pyramidiperhokala

18 cm, Indopasifinen merialue, Havaiji.

Chelmon rostratus
Pinsettikala

Forcipiger flavissimus
Keltapinsettikala

Heniochus acuminatus
Viirikala

Chaetodon unimaculatus
Pisaraperhokala

Chaetodon rafflesii
Kennisperhokala

Chaetodon ulietensis
Pälvipiperhokala

Chaetodon declivis
Oranssiperhokala
Keisarikalat

LAHKO PERCIFORMES, AHVENKALAT
HEIMO POMACANTHIDAE, KEISARIKALAT

Tähän ryhmään kuuluvat keisarikalat, herttuakalat, enkelikalat ja ruhti-naskalat. Suurin osa niistä ei ole riuttaturvallisia, koska syövät koralleja.

<table>
<thead>
<tr>
<th>Centropyge argi herttuakala</th>
<th>8 cm, Karibia. Yleensä riuttaturvallinen. Tarvitsee elävää kiveä ympärilleen, josta etsii ruokaa. Hyvin aggressiivinen toisia uroksia kohtaan ja tappelevat toisen kuolemaan asti, joten samaan altaaseen vain yksi uros. Syö mikrolevää, mutta voi nyppiä korallien polyyppeja ja simpukoiden mantteleita.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centropyge flavissimus herttuakala</td>
<td>15 cm, Fiji, Tahiti. EI RIUTTATURVALLINEN. On hyvin taipuvainen nyppiömään isopolyyppisia kivikoralleja sekä simpukoiden vaippaa. Tarvitsee elävää kiveä ympärilleen, johon piiloutua ja josta etsiä ruokaa. Ei sovi yhteen muiden keisarikalojen kanssa.</td>
</tr>
</tbody>
</table>
Genicanthus bellus
koruruhtinaskala
15 cm, Eteläinen Tyynimeri

Holacanthus passer
kiilaenkelikala
35 cm, Läntinen Tyynimeri

Pomacanthus arcuatus
harmaakeisarikala
50 cm, Karibia.

Pomacanthus imperator
keisarikala
40 cm, Indopasifinen merialue.

Haukkakalat
LAHKO PERCIFORMES, AHVENKALAT
HEIMO CIRRHITIDAE, HAUUKKAKALAT

Haukkakalat ovat mielenkiintoisia veitikoita jotka ”istuvat” etuvesiensä varassa ja kyttäävät syötävää elävästä kivistä ja pohjahiekasta. Niiden ruokalistalle kuuluvat mm. pienet ravut, kotilot ja kalat – siis sellaiset, jotka ne pystyvät nielemään. Harrastajien kannalta on se hyvä puoli, että haukkakalat kasvavat vain 8-10 cm kokoisiksi, joten ne eivät pysty verottamaan kovinkaan suuria selkärangattomia.

Amblycirrhus bimacula
kaksitäplähaukkakala
8 cm, Tahiti.

Cirrhitichthys aprinus
täplähaukkakala
12 cm, Indopasifinen merialue.
<table>
<thead>
<tr>
<th>Sana</th>
<th>Selite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cirrhitichthys oxycephalus</td>
<td>korallihaukkakala</td>
</tr>
<tr>
<td>Neocirrhites armatus</td>
<td>tulihaukkakala</td>
</tr>
<tr>
<td>Oxycirrhites typus</td>
<td>nokkahaukkakala</td>
</tr>
</tbody>
</table>

Vuokkokalat

LAHKO PERCIFORMES, AHVENKALAT
HEIMO POMACENTRIDAЕ, KORALLIAHVENET

Useimmat vuokkokalat syntyvät uroksiksi ja parven dominoiva kala muuttuu naaraaksi.

<table>
<thead>
<tr>
<th>Sana</th>
<th>Selite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphiprion chrysopterus</td>
<td>naamiovuokkokala</td>
</tr>
<tr>
<td>Amphiprion clarkii</td>
<td>seepravuokkokala</td>
</tr>
<tr>
<td>Amphiprion frenatus</td>
<td>punavuokkokala</td>
</tr>
<tr>
<td>Amphiprion leucokranos</td>
<td>valkootsavuokkokala</td>
</tr>
</tbody>
</table>

Neitokalat

Neitokalat ovat samantyyppisiä kuin keijukalat tai -ahvenet sekä vuokkokalat, mutta vähemmän aggressiivisia. Ne viihtyvät parvissa, joissa kaloja on kolmesta ylöspäin. Parvot ovatkin näyttäviä akvaariossa. Neitokalat ovat lajeita, jotka ovat riutta-akvaarioon sopivia, koska ne eivät vahingoita selkäraangattomia eikä koralleja.

<table>
<thead>
<tr>
<th>Chromis iomelas</th>
<th>8 cm, Indopasifinen merialue. Pidetään yleensä pienissä parvissa ja viihtyy akvaaorioissa, joissa on Acropora kivikorallia. Syö lihapitoista ja leväruokaa.</th>
</tr>
</thead>
</table>

Muut koralliahvenet

LAHKO PERCIFORMES, AHVENKALAT
HEIMO POMACENTRIDAEE, KORALLIAHVENET

Alla olevat koralliahvenet ovat usein hyvinkin aggressiivisia ja voivat terrorisoita koko akvaarioita.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysiptera taupou</td>
<td>7 cm, Tonga, Fiji. Riuttaturvallinen. Aggressiivinen. Sitä ei tulisi pitää yhdessä lajitovereiden kanssa eikä altaassa, jossa on pas-siviisia kalioja. Syö erilaista liha- ja leväpohjaista ruokaa. Kutsutaan myös nimellä ”Fiji Blue Devil”.</td>
</tr>
</tbody>
</table>
Kalat

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Huulikalat</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>LAIKO PERCIFORMES, AHVENKALAT</td>
<td></td>
</tr>
<tr>
<td>HEIMO LABRIDAE, HUULIKALAT</td>
<td></td>
</tr>
</tbody>
</table>

Cirrhilabrus rubrimarginatus	13 cm, Melanesia. Riuttaturvallinen. Tämä on aktiivinen ja rauhallinen kala. Kala voi hypätä ulos akvaariosta, joten katon käyttöä suosittelee. Syö liha- ja leväpitoista ruokaa. Kala sopii erinomaisesti riutta-akvaarioon.	
Labroides dimidiatus	puhdistaja	10 cm, Indopasifinen merialue. Riuttaturvallinen. Puhdistajakala, joka syö toisista kaloista loisia eikä sitä oikein voi syöttää. Sitä on lähes mahdotonta saada pysymään hengissä kotiakvaariossa.
Pseudocheilinus hexataenia	pyjamahuulikala	7,5 cm, Indopasifinen merialue. Piilotteleva kala, joka tarvitsee paljon pillopaikkoja. Syö pieniä selkärangattomia, mutta hyväksyy korvaavan lihapitoisen ruoan. Melko rauhallinen. Useita yksilöitä voidaan pitää samassa altaassa, kunhan se on yli 300 L. Kestävä kala riutta-akvaarioon, joka pitää huolta liioista laakamadoista ja kotiioista.
Luikerot

LAHKO PERCIFORMES, AHVENKALAT
HEIMO BLENNIIDAE, LUIKEROT

<table>
<thead>
<tr>
<th>Luikerot</th>
<th>Keskustelusuunta</th>
<th>Kuvaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecsenius bicolor 10 cm, Indopasifinen merialue. Tavallisesti riuttaturvallinen. Tarvitsee paljon elävää kiveä, josta syö levää. Hyvää syödä, mutta yksilöille on syntyä ikäviä tapoja.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Merikokit

Lahko Perciformes, Ahvenkalat
Heimo Callionymidae, Merikokit

| Synchiropus ocellatus
| rengaskokki | 6 cm, Läntinen Tyynimeri.

| Synchiropus picturatus
| huumekala | 7 cm, Läntinen Tyynimeri.

| Synchiropus splendidus
| mandariinikala | 10 cm, Läntinen Tyynimeri.

| Synchiropus stellatus
| tähtikokki | 7 cm, Läntinen Tyynimeri.
Tokot
LAHKO PERCIFORMES, AHVENKALAT
HEIMO GOBIIDAE, TOKOT

Tokkoja on kolmen tyyppiä. Pistoiliravun kanssa symbioosissa elävät vartijatokot, akvaarion pohjalla elävät ja pohjaa kaivelevat tokot sekä pikkutokot, jotka viihtyvät piilossa koralleissa. Akvaariossa tulisi olla sisäänpäin kääntyvät reunat, jotka estävät tokkoja hyppäämään ulos akvaariosta.

| **Amblyeleotris randalli** | **10 cm**, Tyyni Valtameri | Riuttaturvallinen. Saattaa nahistella toisinaan toisen tokon kanssa erityisesti, jos allas on liian pieni. Se ei ole aggressiivinen toisille raputokoille ja saattaa jopa jakaa kolonsa toisen yksilön kanssa. Voi muodostaa symbioosin pistooliravun kanssa. Syö lihapitoista ruokaa ja on syötettävä kahdesti päivässä. |
| Amblyeleotris wheeleri | **7,5 cm**, Indopasifinen merialue | Riuttaturvallinen. Tarvitsee runsaasti irrallista korallimurskaa, riittävän uimatilan ja hiekkapohjan, johon kaivautua. Pieni ryhmä tai pari voi paremmin yhdessä, mutta ne on laittettava akvaarioon yhtä aikaa. Kala on suhteellisen kestävä ja hyvin sairauksia vastustava. Syö lihapitoista ruokaa ja syötettävä kahdesti päivässä. |
Kalat

Nuolikot
LAHKO PERCIFORMES, AHVENKALAT
HEIMO MICRODESMIDAE, NUOLIKOT

Nuolikot ovat värikkäitä kaloja, jotka sopivat mainiosti riutta-akvaarioon. Ne tarvitsevat paljon piiloutumispaikkoja ja vähintään 5 cm paksuisen pohjahiekan kolojen kaivamista varten. Nuolikot ovat kovia hyppimään, joten ainakin ensimmäisten viikkojen aikana tulisi akvaarion päällä olla sujuva estämässä niitä hyppäämästä ulos. Parasta kuitenkin olisi, jos akvaarion yläreunassa olisi 25 cm leveät kaistaleet, jotka estävät kalaa hyppäämästä ulos.

<table>
<thead>
<tr>
<th>Nuolikko</th>
<th>Koko</th>
<th>Elinympäristö</th>
<th>Vaikea-aste</th>
<th>Toimeenputo</th>
<th>Ruoka</th>
<th>Tila</th>
</tr>
</thead>
</table>
Kaniinikalat
LAHKO PERCIFORMES, AHVENKALAT
HEIMO SIGANIDAE, KANIINIKALAT

<table>
<thead>
<tr>
<th>Siganus uspi</th>
<th>keltapyrstökettukala</th>
<th>18 cm, Fiji.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siganus puellus</td>
<td>kultakaniinikala</td>
<td>28 cm, Korallimeri.</td>
</tr>
<tr>
<td>Siganus virgatus</td>
<td>naamiokaniinikala</td>
<td>30 cm, Indopasifinen merialue.</td>
</tr>
<tr>
<td>Siganus vulpinus</td>
<td>kettukala</td>
<td>25 cm, Läntinen Tyynimeri.</td>
</tr>
</tbody>
</table>

Välskärit
LAHKO PERCIFORMES, AHVENKALAT
HEIMO ACANTHURIDAE, VÄLSKÄRIKALAT

| Acanthurus achilles | tulivälskäri | 24 cm, Keskinen Tyynimeri. |

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctenochaetus strigosus
keltasilmävälskäri</td>
<td>18 cm, Keskinen Tyynimeri, Havaiji</td>
</tr>
</tbody>
</table>
Säppikalat

LAHKO PERCIFORMES, AHVENKALAT

HEIMO BALISTIDAE, SÄPPIKALAT

Säppikalat ovat hyvin kestäviä kaloja, jotka sopivat hyvin riittävän suurin kala-akvaarioihin. Akvaariosta on löydyttävä riittävästi piilopaikkoja. Kala on normaalisti hyvin aggressiivinen lajitovereitaan ja muita akvaarioissa olevia kaloja kohtaan. Säppikala kasvaa nopeasti ja on säyseämpi aikuina, jos on kasvanut akvaariossa.

Balistoides conspicillum

- **Pantterisäppikala**
- 50 cm, Indopasifinen merialue.

Odonus niger

- **Sinisäppikala**
- 40 cm, Indopasifinen merialue.

Rhinecanthus aculeatus

- **Picassokala**
- 25 cm, Indopasifinen merialue.

Rhinecanthus rectangulus

- **Kiilasäppikala**
- 30 cm, Fiji, Tahiti.
Lossero- ja pallokalat
LAHKO TETRAODONTIFORMES, JÄYKKÄLEUKAKALAT
HEIMO OSTRACIIDAE, LOSSEROKALAT
HEIMO TETRAODONTIDAE, PALLOKALAT

Losserokalat eivät sovi riutta-akvaarioon siksi, että ne stressitilanteissa tai vahingoittuessaan päästäävät akvaarioon myrkkyyä, joka tappaa muut kalat. Niitä pidetään myrkyllisinä "aikapommeina".

Pallokalat taasen ovat petoja selkärangattomille ja ne nyppivät myös muiden kalojen eviä sekä syövät koralleja, joten eivät siksi sovi riutta-akvaarioon.

Lactoria cornuta
sarviloiserokala

Ostracion cubicus
täplälosserokala

Arothron hispidus
harmaapallokala

Arothron reticularis
verkkopallokala

Canthigaster solandri
pilkupallokala

Sivulasin kautta katsoessa näkee hyvin kuinka etulasi toimii kuin peili (kuva Aleksandr Pyndtk)
23. Rakentelua

Käsistään kätevä henkilö säästää rahaa, jos rakentelee joitakin laitteita itse. On kuitenkin muistettava, että eteen tulee tilanteita, joissa itse tehty ei kuitenkaan aina ole paras mahdollinen ratkaisu vaikkakin saattaa olla se halvin vaihtoehto.

Kalkkiveden syöttölaitteisto

Alla on esitetty muutama tapa syöttää automaattisesti kalkkivettä järjestelmään. Ensimmäinen tapa soveltuu hyvin altaille, joiden korvausveden kulutus on suhteellisen pientä. Rakennusohje yksinkertaisesta annosteluista löytyy osoitteesta\(^1\)

Tässä valmiiksi sekoitettu kalkkivesi syötetään ilmapumpun avulla joko ala-altaaseen tai ala-altaan puuttuessa suoraan pääaltaaseen.

![Diagram](image)

Seuraavaksi esitellään astetta pidemmälle viety metodi, hyvin näppärä sellainen. Tässä tapauksessa tarvitaan kuitenkin ala-allas, koska uimuri pää-akvaariossaa ei ole kovin esteettisen näköinen. Tämän ratkaisun on kehitänyt Marko Haaga. Tällä menetelmällä korvataan esimerkiksi edellä mainittu Tunzen osmolaattori, joka pitää ala-altaan vedenpinnan tasoon aina oikeana. Tässä ratkaisussa uimurin juuriossa puristaa silikoniletkua, sitä enem-
män mitä korkeammalla vedenpinta ala-altassa on, ja säättää korvausveden tiputusnopeutta kalkkivesireaktoriin ja samalla kalkkiveden tiputusnopeutta ala-altaaseen pienemmäksi.

Kolmantena mallina on järjestelmä, joka ei enää ole oikeastaan tee-se-itsereaktelua, koska siinä käytetään täysin valmiita komponentteja.

Kylläistä kalkkivettä muodostuu reaktoriin jatkuvasti kylläistä kalkkivettä. Näin tehtynä kalkkivettä syntyy "automaattisesti", ja kalsiumhydroksidin vaihtoväli voi olla kuukaudesta ylöspäin korvausveden kulutuksesta riippuen.

Neljäs metodi on järjestelmä, jossa yhdistetään ensimmäisen kuvan mukainen ilmapumppu ja tiivis säiliö, jossa on korvausvesi. Korvausvesi "painetaan" kalkkivesireaktoriin, ja tiputusmäärää kontrolloidaan Haagan uimurilla. Tämä on muuten järjestelmä, joka on Markolla itsellään käytössä. Tämä on huonea ratkaisu edelliseen vaihtoehtoon verrattuna, koska kallista letkupumppua ja osmolaattoria ei tarvita.

Durson putki

Veden virtaus pääaltaasta ala-altaseen on äänekästä, jos veden annetaan valua ilman minkäänlaista "äänenvaimenninta". Kun veden kiertoaikuisuus on pari tuhatta litraa tunnissa, putkea pitkin ala-altaseen valuu vettä yli kolmen sangollisen verran minuutissa. Tästä syntyy aikamoinen lirinä ja lorina. Asiaa on tutkinut moni harrastaja ja Richard Durso on löytänyt hyvin toimivan ratkaisun.

Toinen sovellus löytyy täällä (sivu 25) olevassa kuvassa.

Durson kotisivut: http://www.dursostandpipes.com/

1. Päätyhattu
2. T-yhde 90°
3. Kulma 90°
4. PVC paineputki
5. Jatkomuhvi
6. Säiliöliitin
7. Palloventtiili
Jalusta ja katto

Kuvasarjassa kertoo rakentelun päivaiheet pääaltaan osalta. Ensimmäisessä kuvassa lattian rajassa näkyy reikä, jonka kautta putkisto menee seinän läpi sen takana olevaan laitekaappiin, jossa on ala-allas, refugio ja tarvittavat laitteet. Katon sisällä olevien valojen (2 x 400 W) kuristimet, sytyttimet, ajastimet, jne. ovat jalustassa.
Isompien huoltotoimien yhteydessä, kuten pumppujen puhdistuksessa, katto on pystyttävä joko nostamaan kokonaan alas tai siirtämään niin paljon syrjään, jotta tarvittavat huoltotoimet voidaan tehdä. Tässä tilanteessa katto on siirretty vähän syrjään ja huoltotoimet voidaan tehdä seisomalla itse jalustan päällä.
Normaalisti näitä isompia rutineja joudutaan tekemään 2-3 kertaa vuodessa. Muut tarvittavat toimet voidaan tehdä ilman katon siirtoa koska katto-osa aukeaa sekä edestä tai molemmilta päätysivuilta avaamalla.

Kuvatiedot

Kuvien yhteyteen on sulkuhiin merkitty kuvan omistaja tai kuvaaja. Seuraavien henkilöiden kotisivuilta on saatu kuvia:

- Marko Haaga (Haaga) http://www.saunalahti.fi/~haaga/
- Tatu Vaajalahti http://www.saunalahti.fi/~tatu/reef.html
- Aleksandr Pyndyk (ealex) http://ealex.aqua-web.org/
- Sam Salonen http://sam.aqua-web.org
- Jukka Merimaan (Jukka) http://jukka.aqua-web.org/
- Kimmo Sukunanen (Kimmo S) http://www.cs.helsinki.fi/u/ksukanen/
- Mikko Koskinnen (mikkokoo) http://mikkokoo.aqua-web.org/
- HillyBilly http://hilly.aqua-web.org/
- Rauno Räsänen (diversity) http://hytti.uku.fi/~rtrasane/reef/index.htm

Lisäksi Rambin aikaisemmin netistä olleelta kotisivulta on saatu kuva käyttöön ja Juha Posio on kuvannut Jukka Merimaan sivulta otetun Siipisimpun.
Kiitos kaikille, että heidän kuviaan on saatu käyttää.
Sanastoa

Seuraavassa sanooja ja merkityksiä englanniksi ja niiden selitykset suomennettuna. Niistä voi olla apua englanninkielisillä keskustelupaikoilla. Suurin osa suomennetuista sanoista ja selityksistä on myös laitettu suomenkieliseen aakkoselliseen järjestykseen. Osa suomennetuista selityksistä on jätetty pois koska selitys ei anna lisävaloa itse sanalle. Esimerkiksi sana **Vent** on käänetty sanalla ‘peräaukko’ ja kyseistä sanaa ei löydy suomenkieliseltä puolelta hakusanana koska se olisi aivan turhaa.

<table>
<thead>
<tr>
<th>Sanakirjan sana</th>
<th>Sanan valikko</th>
<th>Selitys (suomennus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity</td>
<td>Happamuus. Veden pH on alla 7.</td>
<td>Aerobinen</td>
</tr>
<tr>
<td>Activated carbon</td>
<td>Aktiivi hiili. Käytetään suodattamaan veteen liuenneita jättiä erityisesti keltaisuutta.</td>
<td>Akklamaatio</td>
</tr>
<tr>
<td>Actinic Lights</td>
<td>Aktiiniiset valot. Fluorisoiva valo jonka spektri on hyvin sininen.</td>
<td>Akiiniiset valot</td>
</tr>
<tr>
<td>Aeration</td>
<td>Ilmastaa. Ilman puhaltaminen akvaarioon jotta vedenpinta imisi happea.</td>
<td>Aktiivi hiili.</td>
</tr>
<tr>
<td>Aerobic</td>
<td>Aerobinen. Happirikas.</td>
<td>Ala-alas.</td>
</tr>
<tr>
<td>Acclimation</td>
<td>Soppeuttaminen (akklamaatio). Eliöstön siirtämisen yhteydessä se soppeutetaan uuteen ympäristöön.</td>
<td>Alalaji.</td>
</tr>
<tr>
<td>Absorption</td>
<td>Imeytyminen. Toisen aineen yhtyminen kiinteään aineen pinnalle.</td>
<td>Ammoniakki</td>
</tr>
<tr>
<td>Air Bladder</td>
<td>Ulmarakko. Kaasu täynnä oleva pussi joka sijaitsee kalan vatsaontelossa.</td>
<td>Ammonium</td>
</tr>
<tr>
<td>Algae</td>
<td>Levä. Alkukantainen merikasvi joka on yksi- tai useampisoluinen.</td>
<td>Anaerobinen bakteeri</td>
</tr>
<tr>
<td>Alkaline</td>
<td>Emäksinen. Lipeämäinen, veden pH < 7.</td>
<td>Aragoniti</td>
</tr>
<tr>
<td>Ammonium (NH4)</td>
<td>Ammonium. Suhteellinen on myrkyllinen muoto ammoniakista. Ammoniakki muuttuu ammoniumiksi happamassa (pH alla 7) vedessä.</td>
<td>Artemia salina</td>
</tr>
<tr>
<td>Anal Fin</td>
<td>Peräevä. Löytyy kalan vastapuolelta pyrstön läheisyydestä.</td>
<td>Avoveeteen kutija</td>
</tr>
<tr>
<td>Anaerobic</td>
<td>Hapetin tila.</td>
<td>Anaerobic</td>
</tr>
<tr>
<td>Aerobic Bacteria</td>
<td>Anaerobinen bakteeri. Bakteeri joka menestyy hapettomissa olosuhteissa.</td>
<td>Aragoniti</td>
</tr>
</tbody>
</table>
B

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Bakteeri. Mikro-organismi joka voi olla hyödyllinen kuten ne jotka muuttavat ammoniakia nitriiksi tai haltillisia kuten sellaiset jotka aiheuttavat sairauksia.</th>
<th>Bakteeri</th>
<th>Mikro-organismi joka voi olla hyödyllinen kuten ne jotka muuttavat ammoniakia nitriiksi tai haltillisia kuten sellaiset jotka aiheuttavat sairauksia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Filtration</td>
<td>Biologinen suodatus. Järjestelmä jossa käytetään bakteereita hajottamaan myrkylliset tyyppitoiseet komponentit vähemmän myrkyllisiksi kemikaaleiksi.</td>
<td>Byssusrauhanen</td>
<td>Rauhanen joka löytyy esimerkiksi simpukoilta ja se tuottaa kiinnitysrihmastoa jolla simpukka kiinnittyy kiviin.</td>
</tr>
<tr>
<td>Calcification</td>
<td>Kalkkeutuminen. Prosessi jossa korallit ja korallilevää saavat kalsiumia</td>
<td>Calcareous</td>
<td>Kalkkipitoinen. Sisältää kalsiumia.</td>
</tr>
</tbody>
</table>

C

<p>| Calcification | Kalkkeutuminen. Prosessi jossa korallit ja korallilevää saavat kalsiumia | Calcification | Kalkkeutuminen. Prosessi jossa korallit ja korallilevää saavat kalsiumia |</p>
<table>
<thead>
<tr>
<th>Sanastoa</th>
<th>Merivevestä ja saostavat sen kalsiumkarbonaatiksi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>Kalsium. Mineraali joka on tärkein rakenneaine koralleille ja kalkkipitosille organismille. Riutta-akvaariossa sen arvon tulisi olla 380-480 mg/l.</td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>Kalsiumkarbonaatti. Suhteellisen liukennematon suola. Tunnetaan myös liituna.</td>
</tr>
<tr>
<td>Calcium Hydroxide</td>
<td>Kalsiumhydroksidi Ca(OH)2. Aine jota sekoitetaan veeteen ja sen selkeytynyt osa liuketaan akvaarioon eli seos on kalkkivettä.</td>
</tr>
<tr>
<td>Canister Filter</td>
<td>Ulkosuodatin. Suodatusjärjestelmä jossa on akvaario ulkopuolinen kanisteri joka sisältää erilaisia mekaanisia suodatusvälineitä. Vesi pumpataan akvaariosta suodattimeen pakottaa sen läpi ja sitten palautetaan takaisin akvaarioon.</td>
</tr>
<tr>
<td>Carbon</td>
<td>Hiili. Aine jota käytetään suodatuksessa. Katso aktiivihiili.</td>
</tr>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>Hiilidioksidi (CO₂). Väriöön, hajuton kaasus joka syntyy kun hiilipitoinen aine hapetettu. Sitä tarvitsevat kasvit yhteyttämisessä. Hyvin liukeneva veeteen ja voi olla myrkyllistä kaloiille suurina pitoisuksina erityisesti kun happipitoisuus on matala.</td>
</tr>
<tr>
<td>Carbonate Hardness</td>
<td>Karbonaattikovuus. Osa kokonaiskovuutta joka muodostuu karbonaattiionista ja vetykarbonaattiionista.</td>
</tr>
<tr>
<td>Caudal Fin</td>
<td>Pyrstöevä.</td>
</tr>
<tr>
<td>Caudal Peduncle</td>
<td>Pyrstön tyvi. Ruumiin osa joka liittyy pyrstöevään.</td>
</tr>
<tr>
<td>Chemical Filtration</td>
<td>Kemiallinen suodatus. Prosessi jolla poistetaan liuonnutta jätettä akvaariovedestä kemiallisella reaktiolla.</td>
</tr>
<tr>
<td>Chiller</td>
<td>Jäähdytäjä. Laite jolla jäähdytetään akvaariovedettä.</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Kloori. Aine jota käytetään kunnallisissa vesilaitoksissa tapaamaan bakteereita. Kloori on myrkyllistä kaloiille ja selkäran-gottomille ja se on poistettava vedestä ennen kuin vesin voidaan lisätä akvaarioon.</td>
</tr>
<tr>
<td>Class</td>
<td>Laji. Elävien organismien biologinen jako kuten kalat, nisäkkäät.</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Polttiauxiärmet. Eläinryhmä johon kuuluu meduusat, merivuokot ja korallien polyypit.</td>
</tr>
<tr>
<td>Conditioning</td>
<td>Sopuuttaminen. Prosessi jossa valmistellaan täyskasvuisia kalojen kutua varten.</td>
</tr>
<tr>
<td>Copper</td>
<td>Kupari. Metalli jota käytetään kupari-sulfaatin muodossa hoitamaan sairauksia ja hävittämään loisia</td>
</tr>
</tbody>
</table>
Akvaario

Akvaario

Kuperi on erittäin myrkyllistä selkärangattomille ja siksi sitä EI KOSKAAN saa käyttää riutta-akvaariossa.

Coralline Algae

Korallin tyyppinen levä, kalkkilevä.

Kuorruttavaa tyyppiä oleva levä joka muodostaa kalkkipitoisen kuoren kuten koralli. Kyseinen levä on hyvin värkäs esim. kirkkaan purpurana, pinkiinä sekä punaisena. Se on hyvin haluttua riutta-akvaarioihin ja kasvaa elävällä kivillä ja muilla kovilla pinnilla ja pitää pH:ta, alkaliniteettiä ja kalsiumia optimaalisella tasolla.

Crustacean

Ayllinen.

Cultivated (Fishes)

Cyanobacteria

Deionizing

Deionisaatio, ioninpoisto. Veden puhdistustapa jolla poistetaan ioneja vedestä jolloin siitä tulee vapaa mineraaleista että kaasuita.

Denitrification

Denitrifikaatio

Prosessi jolla poistetaan typeä ja sen komponentteja. Tyypen katoaminen tavallisesti tarkoittaa nitraatin muuntumista typikaasuksi hapettomassa tilassa. Tapahtuu elävissä kivissä että paksussa hiekkapedissä.

Detritus

Akvaarion pohjalle kertyvä hienojakoinen jäte.

Dissolved Oxygen

Liuennut happi. Hapen määrä liuosessa sen hetkisessä ilmanpaineessa ja lämpötilassa.

Diatoms

Piilevä. Yksisoluinen levä jolla on kovat sidoskuoret.

Diatomaceous Earth

Piilevämaa. Suodatinaine joka tehty piilevän fossiilisten jäämien jauheesta.

Dorsal

Kalan selkä

Dorsal fin

Selkälevä

Dosing Pump

Annostelupumppu. Pumppu jonka avulla lisätään pieniä määräi kemikaalia tai hivenaineita akvaarioveteen. Suositellaan, että kalkkivesi lisättäisiin juuri täällä tavalla.

E

Ectoparasites

Ulkoloinen. Loinen jota elää ruumiin

Elävä kivi

Kiveä joka on riutalta ja siinä on
<table>
<thead>
<tr>
<th>Sanastoa</th>
</tr>
</thead>
</table>

| Electrical Conductivity | Sähkönjohtokyky. Mittaa liuvenneen suolan kokonaispitoisuuden. Kun suola liukenee veteen, se luovuttaa sähköisesti varautuneita ioneita ja nämä ionit johtavat sähköä. |
| --- |

| Edema | Turvotus. Runsas nesteen kerääntyminen ruumiin kudksiin. |
| --- |

| Endoparasites | Sisäloinen. Loinen joka elää ruumiin sisällä ja on usein jossakin sen määrätyssä osassa kuten suolistossa. |
| --- |

| Euthanasia | Inhimillinen tapa lopettaa kuolevan kalan kärsimyksen. |
| --- |

| Exophthalmos | Mulkosilmäisyys. Epänormaali silmän ulostyöntyminen. |
| --- |

<table>
<thead>
<tr>
<th>F</th>
</tr>
</thead>
</table>

| --- |

| Fertilization | Hedelmöitys. Prosessi jossa munat hedelmöitetään sekoittamalla munasolut ja maiti. |
| --- |

| Filter | Suodatin. Laite jolla poistetaan ei toivotuja partikkeleita tai komponentteja akvaariovedestä. Löytyy biologisia, kemikaalisia ja mekaanisia suodattimia. |
| --- |

| Filter Feeder | Siivilöijä. Elööntuta joka siivilöi vedestä ravintoaineita kuten planktoneita, bakteereita tai detritusta. |
| --- |

| Filter Medium | Suodatinaine. Suodattimen sisältö joka poistaa orgaanisia jätteitä ja epäpuhtautuksia akvaariovedestä. |
| --- |

| Filtration | Suodatus. Prosessi jolla poistetaan orgaanisia jätteitä ja epäpuhtautuksia akvaariovedestä mekaanisesti, kemiallisesti tai biologisesti. |
| --- |

| Fins | Evät. ’Jäsenet’ joiden avulla kalat liikuttelevat itseään vedessä. |
| --- |

| Foam Factionation | Vaahdolla erottelu. Biologinen suodatustapa jolla poistetaan valkuaisainetta vedestä vaahdon avulla. Tätä suodatustapaa käytetään valkuaisainevaahdottimessa. |
| --- |

| Fry | Kalanpoikaset. |
| --- |

| Fungus | Mädännäisloinen ja loisitiöitä tuottava eliööntä joka normaalisti luokitellaan kasvaksi jolta puuttuu lehtivihreää. Sieni joka kasvaa kalan avoimissa haavoissa ja näkyy pumpulitupsun kaltaisena. |
Sanastoa

G

Gas Exchange	Kaasujen korvaus. Vaihto joka tapahtuu veden pinnalla joissa kaasut kuten happi ja hiilidioksidi siirtyvät vedestä ilmaan ja päinvaatoin.	**Gonopodi**	Sauvamainen muutos peräevään uroskalalla jota käytetään hedelmöittämään munia jotka ovat naaraan sisällä.
Genus	Suku. Termi jota käytetään eliöstön luokittelemiseen. Ryhmiltään kalat samanlaisiin lajeihin.		
Gills	Kidukset. Hengitys eli ympäristön ilmanveden haita, jossa kaasut kuten happi ja hiilidioksidi siirtyvät vedestä ilmaan ja päinvastoin.		
Gill Cover	Läpät jotka suojaavat kalan kiduksia.		
Gonopodium	Gonopodi. Sauvamainen muutos peräevään uroskalalla jota käytetään hedelmöittämään munia jotka ovat naaraan sisällä.		
Guanin	Kristalleja joita sijaitsee kalan ihon alla ja joiden ansiosta kala kimaltelee sateenkaaren väreissä.		

H

Halogen Lights	Halogeneenivalot. Valot joissa on hyvin keltainen spektri. Tästä johtuen valo ei sovi riutta-akvaarion.	**Halogeneenivalot**	Valot joissa on hyvin keltainen spektri. Tästä johtuen valo ei sovi riutta-akvaarion.
Hand-Stripping	Käsän lypsäminen. Mädin tai maidin poistaminen käsipäällä,	**Hapetin**	Happea kehittävä laite jota tuottaa sitä akvaarioveteen kemiallisella reaktiolla. Reaktion alkua on vetyperoksidi joka hajoaa vedeksi ja hapenee.
Hardness	Veteen lienneen mineraalien määrää (etupäässä kalsiumin ja magnesiumin).	**Happamuus**	Veden pH on alle 7.
Heater	Lämmitin. Sähkölaite joka lämmittää akvaarion vettä.	**Hedemöitys**	Prosessi jossa munat hedelmöitettävät sekoimalla munasolut ja maiti.
Herbivore	Kasvissijä. Eläin joka syö kasveja. Kasvissijät kuten koliot ja väiskärit ovat tärkeä osa riutta-akvaariota koska ne auttavat pitämään leväntkasvun hallinnassa.	**Heiluvat tuntlonkerot**	Pitkät polttavat tuntlonkerot joita jotkut aggressiiviset kivikorallit käyttävät polttamaan muita lähellä olevia koralleja jotta itse saavat riittävän suuren kasvualan.
Hemorrhage	Verenvuoto.	**Heimo**	Termi jolla luokitellaan eliöstöt. Heimo muodostuu vastaavista suvuuista.
Host	Isäntä. Eläin tai kasvi joka antaa turvapaikan tai ravintoa toiselle elölle.	**Hiekanalussuodatin**	Sudastinlaatta joka on asennettu akvaariin pohjalla olevan hiekan alle. Sen tarkoitus on edistää hyvien bakterien kasvua joita hoitavat biologisen suodatuksen. Käytetään vähenevää määrin nykyisin.
pitoisuksina erityisesti kun happipitoisuus on matala.

Hivenaineet
Aineet jotka ovat pienimmäsin määrässä vettä rokoa.

Hydrometri
(Luppovaaka)
Laitte jolla mitataan veden tihyyttä tai ominaispainoa. Olemassa on vedessä kelluvaa tyyppiä ja viisarimalli.

Ich (Ick)
Ichthyophthirius multifiliis. Yksisoloinen ulkoloinen joka aiheuttaa yleisemmin tunnetun ’valkopilkku sairauden’.

Ichthyology
Kalatiede.

Impeller
Juoksupyörä. Pumpussa oleva potkuri joka saa aikaan vedenvirtauksen pumpun tai suodattimen läpi.

Infertile
Lisääntymiskyvytön tai hedelmätön. Munat jotka eivät ole hedelmöityneet.

Invertebrates
Selkärangattomat. Tähän ryhmään kuuluvat nilviäiset, ääriäiset, madot, korallit.

Iodine
Jodi. Hivenaine jota esiintyy merivedessä ja joka on tarpeellinen pienissä määrin jollekin riutalla oleville selkärangattomille kuten korallille ja simpukoille.

Ions
Ionit. Sähköisesti varautuneet hiukkaset joita löytyy vedestä sen jälkeen kun suola on liuennut.

Ion Exchanger
Ioninvaihtosuodatin. Keinotekoinen hartsi joka pystyy muuttamaan ei-toivottuja ioneja halutumpaan muotoon.

Isäntä
Eläin tai kasvi joka antaa turvapaikan tai ravintoa toiselle eliölle.

J

Jodidi
Hivenaine jota esiintyy merivedessä ja joka on tarpeellinen pienissä määrin jollekin riutalla oleville selkärangattomille kuten korallille ja simpukoille.

Juoksupyörä
Pumpun potkuri joka saa aikaan vedenvirtauksen pumpun tai suodattimen läpi.

Jäähydttäjä
Laite jolla jäähydysetään akvaariovettä.

K

Kalkwasser

Kaasujen korvaus
Vaihdo joka tapahtuu veden pinnalla jossa kaasut kuten happi ja hiilidioksidi siirtyvät vedestä ilmaan ja päinvastoin.

KH
Karbonaattikovuus.

Kalkkeitutuminen
Prosessi jossa korallit ja korallilevä saavat kalsiumia merivedestä ja saostavat sen kalsiumkarbonaatiksi.

Kalkkipitoineen
Sisältää kalsiumia.
<table>
<thead>
<tr>
<th>Sanastoa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalsium</td>
<td>Mineraali joka on tärkein rakenneaine koralleille ja kalkkipitoisille organismeille. Riutta-akvaariossa sen arvon tulisi olla 360-460 mg/l.</td>
</tr>
<tr>
<td>Kalsiumhydroksidi Ca(OH)2</td>
<td>Aine jota sekoitetaan veteen ja sen selkeytynyt osa tiputetaan akvaarioon eli seos on kalkkivettä.</td>
</tr>
<tr>
<td>Kalsiumkarbonaatti</td>
<td>Suhteellisen liukenematon suola. Tunnetaan myös liituna.</td>
</tr>
<tr>
<td>Karanteeni</td>
<td>Toimintatapa jossa uusi kala pidetään määrätty aika erillisessä altaassa ennen siirtämistä muiden joukkoon. Näin varmistetaan ettei sairaudet siirry uuden kalan mukaan akvaarioon.</td>
</tr>
<tr>
<td>Karbonaattikovuus</td>
<td>Osa kokonaiskovuutta joka muodostuu karbonaattionista ja vetykarbonaattionista.</td>
</tr>
<tr>
<td>Kasvatusallas</td>
<td>Erikoisallas kalanpoikasiille.</td>
</tr>
<tr>
<td>Kasvi kuteajat.</td>
<td>Kalat jotka laskevat munansa kasveihin.</td>
</tr>
<tr>
<td>Kasvoplankton</td>
<td>Pieniä mikroskooppisia kasveja jotka ajelehtivat merivedessä.</td>
</tr>
<tr>
<td>Kasvissyyjä</td>
<td>Eläin joka syö kasveja. Kasvissyyjät kuten kotiottot ja vältäjät ovat tärkeä osa riutta-akvaaroita koska ne auttavat pitämään levänkasvun hallinnassa.</td>
</tr>
<tr>
<td>Keijusto</td>
<td>Termi jolla kuvataan sekä kasvi- että eläinplantonia.</td>
</tr>
<tr>
<td>Kemiallinen suodatus</td>
<td>Prosessi jolla poistetaan liuennutta jätettä akvaariovedestä kemiallisella reaktiolla.</td>
</tr>
<tr>
<td>Kidukset</td>
<td>Hengityselimet joilla kalat ottavat happea vedestä sisäänsä ja poistavat tyyppitipotisia jätteitä kuten ammoniakkia.</td>
</tr>
<tr>
<td>Kiduskanssi</td>
<td>Läppä joka suojaa kidukisia.</td>
</tr>
<tr>
<td>Kiduskanssi</td>
<td>Läppä joka suojaa kidukisia.</td>
</tr>
<tr>
<td>Kiertäytpumppu</td>
<td>Pieni upotettava pumppu jolla akvaarion sisällä olevaa vettä kiertätään. Usealla pumpulla ja niitä ohjaavalla ohjausyksiköllä voidaan simuloida luonnollisia aallon liikkeitä.</td>
</tr>
<tr>
<td>Kiertonopeus</td>
<td>Nopeus jolla vesi kiertää akvaarioissa tai akvaarion ja ala-altaan välillä. Riutta-akvaariossa suositellaa suurta kiertonopeutta.</td>
</tr>
<tr>
<td>Kloori</td>
<td>Aine jota käytetään kunnallisissa vesilaitoksissa tapaamaan bakteereita. Kloori on myrkyllistä kaloiille ja selkäran-gattomille ja se on poistettava vedestä ennen kuin vesi voidaan lisätä akvaarioon.</td>
</tr>
<tr>
<td>Kokonaiskovuus (dGH = saksalainen)</td>
<td>Termi jolla kuvataan magnesium- ja kalsiumionien liuennutta pilouksulta. GH</td>
</tr>
</tbody>
</table>
Korallin tyyppinen levä, kaikkilevä

Kovuus

Veteen liuiteneminen mineraalien määrää (etupäässä kalsiumin ja magnesiumin).

Kuitu

Vaikeasti sulava osa ruokaa.

Kupari

Metalli jota käytetään kuparisulfuaatin muodossa hoitamaan sairauksia ja hävittämään loisia akvaariosta. Kupari on erittäin myrkyllistä selkärangattomille ja siksi sitä EI KOSKAAN saa käyttää riutta-akvaarioissa.

Kuristin

Virtualähde jota tarvitaan loistepuut ja moninetallivalaisimissa. Kunkin tyyppinen valaisin vaatii oman tyyppensä kuristimen.

Käänteisosmoosi

Prosessi jossa kaikki komponentit jotka muodostavat suoloja ja muita molekyylejä poistetaan vedestä.

Labyrinth Organ

Labyrinttielin. Ulkopuoliset hengityselimet jotka löytyvät joillakin kaloihin ja jotka sallivat niiden hengittää ilmaa.

Lahnio

Termi jonka avulla luokitellaan eliöstöä. Toisilleen sukua olevat kalat muodostavat laikon.

Larvae

Kalat. Kalanpoikaset tai hyönteisten jälkeläiset jotka eivät ole vielä täysin kehityneet.

Livebearer

Kalat jotka synnyttävät eläviä poikasia eikä sils kude.

Live Rock

Elävä kivi. Kiveä joka on riutalta ja siinä on erilaisia eläväja kuten sienä, levää, korallilevää, matoja, merentättäjä, yms. Elävää kiveä käytetään yleisesti riutta-akvaarioissa koska se sisältää bakteereita jotka auttavat vedessä olevan ammoniakkin muuttumaan myrkyttömäksi kopolponentteiksi eli elävä kivi toimii biologisena suodattimena.

Lajike

Kalakanta jolla on määritetyinä piirteitä kuten esim. väri. Akvaariota varten valmistettu erikoismuunnos.

Live Rock

Elävä kivi. Kiveä joka on riutalta ja siinä on erilaisia eläväja kuten sienä, levää, korallilevää, matoja, merentättäjä, yms. Elävää kiveä käytetään yleisesti riutta-akvaarioissa koska se sisältää bakteereita jotka auttavat vedessä olevan ammoniakkin muuttumaan myrkyttömäksi kopolponentteiksi eli elävä kivi toimii biologisena suodattimena.
Loiseläin

Elävä organisme joka elää toisen organismin joko pinnalla tai sisällä ja josta se saa ravintonsa.

Lypsäminen

Mailin ja munien lypsy käsin kaloista.

Lähdekalkki

Kalkkipitonen huokoinen kivi jossa jossa on paljon reikiä ja teräviä kulmia.

Lämmitin

Sähkölaite joka lämmittää akvaarioon vettä.

M

Macroalgae

Makrolevä. Iso kasvin tyylinen levä jota löytyy punaisena, vihreänä ja ruskeana. Yksi yleisimmistä niistä on Caulerpa joka kasvattaa pallomaisia rypäleitä.

Loiti

Koiraan siemenneste.

Mechanical Filtration

Mekaaninen suodatus. Veden suodatustapa jossa suodatin materiaali, esimerkiksi vanu, poistaa hiukkasia vedestä.

Makrolevä

Iso kasvin tyylinen levä jota löytyy punaisena, vihreänä ja ruskeana. Yksi yleisimmistä niistä on Caulerpa joka kasvattaa pallomaisia rypäleitä.

Microalgae

Mikrolevä. Mikrokooppisien pieni levä kuten esim. viherlevä tai rihmalevä jotka ovat yleisiä merivesiakvaarioissa.

Mekaaninen suodatus

Veden suodatustapa jossa suodatin materiaali, esimerkiksi vanu, poistaa hiukkasia vedestä.

Metallic

Hyvin heijastava, metallinen.

Mikrolevä

Mikrokooppisien pieni levä kuten esim. viherlevä tai rihmalevä jotka ovat yleisiä merivesiakvaarioissa.

Metal Halide

Milt

Maiti. Koiraan siemenneste.

Mulkosilmiöisyys

Epänormaali silmän ulostyöntyminen.

Mollusks

Nilviäinen. Ryhmä pehmeäruumiisia selkärangattomia joihin kuuluvat kotiolot, simpukat ja mustekalat. Useimmilla nilviäislöyliä on turvapaikka ja suojana jonkinlainen kova kuori.

Murtovesi

Vesi jossa vähän suolanvertaa ja suuri määrä makeaa vettä.

Mops

Kimpuu nalionvanuuta jota käytetään kasvien asemesta kutupaikkaan

Muunno

Johonkin kalalajiin kuuluva yksilö jolla on näkyviä muutoksia värissä, evien muodossa tai kasvussa, jne.

Morph

Muunno. Luonnollinen värimuunnelma.

Mädännäisloinen

Loistioitä tuottava elööstö joka normaalisti luokitellaan kasviksi jolta puuttuu lehtivihreä. Sieni joka kasvaa kalan avoimissa haavoissa ja näky pumpputilaisen kaltaisena.

Mouth-brooder

Suuhautoja. Kala joka hautoo ja suojeele keulanpoikasia pitämällä niitä suussaan.

Märkä/kuivasuodatus

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nacreous</td>
<td>Puoliheijastava.</td>
</tr>
<tr>
<td>Nauplius</td>
<td>Vasta kuoriutunut suolalehtijalkainen (Artemia salina).</td>
</tr>
<tr>
<td>Narial Septum</td>
<td>Li Haoa kalan sierainten väliisa.</td>
</tr>
<tr>
<td>Natrii</td>
<td>Lopullinen yhdiste joka saadaan aikaan denitriifikaatio (tyypen nitraattien poistaminen) prosessissa.</td>
</tr>
<tr>
<td>Nitrite</td>
<td>Välimuotoyhdiste joka saadaan aikaan denitrifikaatio (tyypen nitraattien poistaminen) prosessissa. Tämä aine on ammoniakin ja nitraatin 'välimuoto' biologisessa suodatukessa.</td>
</tr>
<tr>
<td>Nitrification</td>
<td>Nitriittitypehin hapettamin nitriittitypeksia tai nitriittitypeksia.</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Typpi. Väritön, mauton, hajuton, suhteellisen passivinen kaksiaatominen kaasu jota on 78% ilmakehässä.</td>
</tr>
<tr>
<td>Nitrosochemicals</td>
<td>"Hyvä" bakteerit jotka muuttavat ammoniakkin nitriitiksi biologisessa suodatukessa.</td>
</tr>
</tbody>
</table>

Sanastoa
<table>
<thead>
<tr>
<th>Termi</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oodinium</td>
<td>Yksisoluinen ulkoloinen joka aiheuttaa samettitaudin.</td>
</tr>
<tr>
<td>Open-Water Spwners</td>
<td>Avoveteen kutija. Kala joka laskee munat vapaasti avoveteen.</td>
</tr>
<tr>
<td>Operculum</td>
<td>Kiduskansi. Läppä joka suoja kiduksia.</td>
</tr>
<tr>
<td>Order</td>
<td>Lahko. Termi jonka avulla luokitellaan eläimiä. Toisilleen sukua olevat kalat muodostavat lahkon.</td>
</tr>
<tr>
<td>Osmotic Stress</td>
<td>Osmoottinen stressi. Haitallinen reaktio siitä kun eläimen ympäristön suolapitoisuus muuttuu radikaalisti.</td>
</tr>
<tr>
<td>Ova</td>
<td>Kalna muna eli mätiä.</td>
</tr>
<tr>
<td>Oviparous</td>
<td>Ovipaarinen. Tuottaa munia, jotka kuoriutuvat naaraan sisällä.</td>
</tr>
<tr>
<td>Oxygen Reduction Potential (ORP)</td>
<td>Mitta sille kuinka hyvin vesi pystyy puhdistamaan itseään.</td>
</tr>
<tr>
<td>Oxidator</td>
<td>Hapelin. Happea kehitettävä laite joka tuottaa sitä akvaarioveteen kemiallisella reaktiolla. Reaktion alkuaine on vetyperoksiidi joka hajoaa vedeksi ja hapeksi.</td>
</tr>
<tr>
<td>Ozone</td>
<td>Otsoni. O₃ joka on hapen hyvin reagoiva osa ja sitä käytetään joskus yhden valkuaiainenvaahdottimen kanssa lisäämään vaahdottomen toimintaa ja tappamaan bakteereita. Otsonia on käytettävä hyvin varoen koska se on liiallisesti käytettyä myrkyllistä kalolle ja selkärangattomille.</td>
</tr>
<tr>
<td>Sanasto</td>
<td>Määrittelemä</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ozonizer</td>
<td>Otsontointilaite, otsonaattori. Laite joka käyttää korkeajännitteistä sähköä tuottamaan ostonia.</td>
</tr>
<tr>
<td>Pectoral Fins</td>
<td>Rintaevät. Evät jotka sijaitsevat heti kiduskansien takana kalan molemmilla puolilla.</td>
</tr>
<tr>
<td>Peritonitis</td>
<td>Vatsakalvontulehdus.</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Polyps</td>
<td>Polyppieläimet. Elävä eläin jonka kuolleet rangat muodostavat</td>
</tr>
<tr>
<td>Sanastoa</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>koralliriutat.</td>
<td></td>
</tr>
<tr>
<td>Power Filter</td>
<td>Tehosuodatin. Suodatin jonka lävitsee virtaa suuri vesimäärä ja veden virtaus saadaan aikaan sähköisellä juoksupöyrällä.</td>
</tr>
<tr>
<td>Powerhead</td>
<td>Veden kierätyspumppu. Pieni upotettava pumpuu jolla akvaarion sisältä olevaa vettä kierättäetään. Usealla pumpulla ja niitä ohjaavalla ohjausyksiköllä voidaan simuloida luonnollisia aallon liikkeitä.</td>
</tr>
<tr>
<td>Propagation</td>
<td>Lisääntyminen. Prosessi jossa kasvatetaan uusia kasveja olemassa olevista.</td>
</tr>
<tr>
<td>Protein Skimmer</td>
<td>Valkuaisainevaahdotin. Ulkoinen suodatuslaite joka käyttää kuplia poistamaan typipikkeitä valkuaisaineita, rasvahappoja ja muita orgaanisia jätteitä.</td>
</tr>
<tr>
<td>Quarantine</td>
<td>Karanteeni. Toimitata tapa jossa uusi kala pidetään määrätyn aikaa erillisessä altaassa ennen siirtämistä muihin joukkoihin. Näin eivät sairaudet eivät siirry.</td>
</tr>
<tr>
<td>Reactor</td>
<td>Reaktori. Suljettu säiliö joka normaalisti sijaitsee ala-altaan lähistöllä ja jonka avulla voidaan esim. lisätä veden kalsiumpitoisuutta (esim. kalkkireaktori tai kalkkivesireaktori).</td>
</tr>
<tr>
<td>Rearing Tank</td>
<td>Kasvatusallas. Erikoisallas jossa kasvatetaan kalanpoikasia.</td>
</tr>
<tr>
<td>Redox</td>
<td>Redoksi, hapetus-pelkistys. Se on mitta joka kertoo veden kyvyn sallia biologisten reaktioiden tapahtumisen ja se samalla kertoa veden laadusta. Redoksi voidaan mitata elektroniolla antureilla ja mitä suurempi arvo niin sitä parempi tulos.</td>
</tr>
<tr>
<td>Roughage</td>
<td>Kuitu. Vaikeasti sulava osa ruokaa.</td>
</tr>
<tr>
<td>Runner</td>
<td>Esille työntyvät juurien tyypiset kasvun kasvuosat joista uusi kasvi alkaa.</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Salts</td>
<td>Suolat. Kemikaalisisia seoksia jotka muodostuvat negatiivisesti ja positiivisesti varautuneista hiukkasista. Suola (yksiikkömohdossu) usein tarkoittaa natriumkloridia.</td>
</tr>
<tr>
<td>Salinity</td>
<td>Suolapitoisuus. Määrätty määrä suoloja vedessä.</td>
</tr>
<tr>
<td>Scales</td>
<td>Suomut. Kalan ihoa peittävä suojakerros.</td>
</tr>
<tr>
<td>School</td>
<td>Kalaparvi joka tavallisesti muodostuu samasta lajista ja ui yhdessä. Käytetään myös sanaa Shoaling.</td>
</tr>
<tr>
<td>Shimmies</td>
<td>Keinuhtelu. Tilanne joka aiheuttaa kalan haluttomia toimintoihin peittäväakin.</td>
</tr>
<tr>
<td>Shoal</td>
<td>Joukko. Ryhmä kaloja jotka ovat samaa lajia.</td>
</tr>
<tr>
<td>Shoaling</td>
<td>Kalaparvi joka tavallisesti muodostuu samasta lajista ja ui yhdessä. Käytetään myös sanaa Shoaling.</td>
</tr>
<tr>
<td>Silicone Sealant</td>
<td>Silikonitäyte. Kumiainen itseilmautuva täyteaine jota käytetään akvaarioihin suomalaisia tai liimaamaan lasiosat yhteen. Voidaan käyttää myös ruutta-akvaarioissa liimaamaan elävää kiveä yhteen.</td>
</tr>
<tr>
<td>Singletail</td>
<td>Kala jolla on yhtenäinen jakaumaton pyrstövä.</td>
</tr>
<tr>
<td>Siphon Tube</td>
<td>Imuputki. Putki jota pitkin vesi juoksee tasolta toiselle joko painovoiman avulla tai pumppulla pumpaamalla.</td>
</tr>
<tr>
<td>Soft Water</td>
<td>Pehmeä vesi. Vesi josta puuttuu liuonnet Suodatin</td>
</tr>
<tr>
<td>Spawning</td>
<td>Kuteminen</td>
</tr>
<tr>
<td>Spawning tank</td>
<td>Kutuallas</td>
</tr>
<tr>
<td>Species</td>
<td>Lajit. Ryhmä kaloja samaa sukua. Ne jakaavat samat ominaisuudet ja voivat lisääntyä keskenään.</td>
</tr>
<tr>
<td>Species Tank</td>
<td>Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.</td>
</tr>
<tr>
<td>Sponge Filters</td>
<td>Sienisuodattimet. Suodatin tyyppi joka omistaa molemmat sekä mekaanisen että biologisen suodatuksen. Veli vesi kulkee suodatimen läpi, poistaa sieni hiukkaset. Sienen pinnalla kasvavat bakteerit poistavat myrkyllisiä aineita veden johdosta.</td>
</tr>
<tr>
<td>Strain</td>
<td>Lajike. Kalakanta jolla on määritellyt piirteet kuten esim. väri. Akvaarion varten jalostetu enkoolismuunnos.</td>
</tr>
<tr>
<td>Septicemia</td>
<td>Verenmyrkyttys. Bakteerin aiheuttama infektiointi veressä.</td>
</tr>
<tr>
<td>Solubility</td>
<td>Liukoisuus.</td>
</tr>
<tr>
<td>Stress</td>
<td>Tressi.</td>
</tr>
<tr>
<td>Stressor</td>
<td>Stressitekijä. Tekijät tai olosuhteet jotka aiheuttavat stressiä eliöille.</td>
</tr>
<tr>
<td>Stripping</td>
<td>Lypsäminen. Maitin ja munien lypsäminen kasin kaloista.</td>
</tr>
<tr>
<td>Subspecies</td>
<td>Alalajit. Saman lajin normaalisti maantieteellisesti erilaisista asuva alalaji.</td>
</tr>
<tr>
<td>Substrate</td>
<td>Pohjamateriaali. Akvaariokohdalla oleva aines. Hiekkä jossa määrätään riittävän ylikirkastumisen.</td>
</tr>
</tbody>
</table>

Sanastoa

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.

Species Tank Lajit. Akvaario jossa on vain yhtä tiettyä kalalajia.

Specific Gravity Ominaispaino. Sellaisen nesteen tihys joka sisältää liuonnita mineraaleja verrattuna puhtaaseen veteen.
Surface Area	Pinta-ala. Veden ala joka on kosketuksessa ilmakehän kanssa.
Sweep Tentacles	Heiluvat tuntolonkerot. Pitkät pollatvat tuntolonkerot joita jotkut aggressiiviset kivikorallit käyttävät polttamaan muita lähellä olevia koralleja jotta itse saavat riittävän suuren kasvualan.
Swim-Bladder	Uimarakko. Kaasua täynnä oleva puissu joka sijaitsee kalan vatsaontelossa.
Swim Bladder Disorder	Uimarakon toimtahäiriö.
Systemic	Koko ruumista koskeva. Viittaa kaikkien sisäelinten infektioon.

<p>| T |
| Territory | Territorio. Alue jonka joku määritty kala varaa itselleen ja pitää muut siltä loitolla. |
| Territorial | Territoriaalinen. Käyttäytyminen jossa pidetään jokin alue hallinnassa ja ei lasketa muita tälle alueelle. |
| Toxemia | Myrkytystila. Myrkytyn aiheuttama tilanne veressä. |
| Toxic | Myrkyllinen |
| Toxicity | Myrkyllisyys |
| Toxin | Myrkyyt |
| Trace Elements | Hivenaineet. Aineet jotka ovat pienimmän määrässä vettä ruokaa. |
| Trichodina | Yksisoluinen ulkoloinen. |
| Trickle Filters | Valutus-suodattimet. Suodatus tapa jossa vettä tiputetaan välainelle joka on alttiina ilman kanssa. Ilma auttaa edistämään ammoniakkityprenan happeittumista pitkittityyksiä tai nitraattityyksiä. Suodatinvälaine |
| Tehosuodatin | Suodatin jonka lävitsee virtaa suuri vesimäärä ja veden virtaus saadaan aikaan sähköisellä juoksupyörällä. |
| Territoryalinen | Käyttäytyminen jossa pidetään jokin alue hallinnassa ja ei lasketa muita tälle alueelle. |
| Territorio | Alue jonka joku määritty kala varaa itselleen ja pitää muut siltä loitolla. |
| Torvimato | Putken muotoisia mutamatoja jotka ovat eräs kalojen hyvä ruokalähde. |
| Troppinen | Viittaa kaikikin kaloihin ja eliöstöön joka vaatii veden joka on normaalia huoneilmaa lämpimämpää. |
| Tuhkakivi | Kalkkipitonen huokoinen kivi jossa on paljon reikiä ja teräviä kulmia. |
| Tuntoelin (barbel) | Viisikarvan tyypin kaksu suun tyvessä joillaan kalalajeilla joilla ne poikuttavat ruoan. |
| Tuntoolinjerot | Pitkät pollatvat tuntolonkerot joita jotkut aggressiiviset kivikorallit käyttävät polttamaan muita lähellä olevia koralleja jotta itse saavat riittävän suuren kasvualan. |
| Turvesuodatus | Kemiallinen suodatus tapa joka käytetään makeanveden akvaarioissa alentamaan sekä karbonaatikkovutta että veden pH:ta. |</p>
<table>
<thead>
<tr>
<th>Sanastoa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tavallisesti sisältää pieniä muovipalloja tai muovisuikaleita. Valutussuodatinta tosin ei enää käytetä juurikaan riutta-akaarilesaiissa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical</td>
</tr>
<tr>
<td>Trooppinen. Viittaa kaikkiin kaloihin ja eliöstön jossa on normaalit veden huoneilmaa lämpimämpää.</td>
</tr>
<tr>
<td>Turvotus</td>
</tr>
<tr>
<td>Runsas nesteen kerääntyminen rumiin kudiksi.</td>
</tr>
<tr>
<td>Tubercle</td>
</tr>
<tr>
<td>Typpi</td>
</tr>
<tr>
<td>Väritön, mauton, hajuton, suhteellisen passiivinen kaksiantomin kaasu jota on 78% ilmakehässä.</td>
</tr>
<tr>
<td>Tubifex</td>
</tr>
<tr>
<td>Typpikierto</td>
</tr>
<tr>
<td>Typpikierto kuvaa sitä kuinka jätteet hajotetaan bakteereiden avulla akvaarioissa. Eläimien jätteet hajoavat myrkkylliseksi ammoniakiksi (NH3). Ammoniakkik ei avulla niitritiksi (NO2) joka hyvin myrkkyllinen aine. Nitratit bakteerei hapettaa niitriin niitratiksi (NO3) joka on jo paljon vähemmän myrkyllinen.</td>
</tr>
<tr>
<td>Tufa</td>
</tr>
<tr>
<td>Typpipitoiset jätteet</td>
</tr>
<tr>
<td>Typpikomponentit joita syntyy proteenien aineenvaihdunnasta.</td>
</tr>
<tr>
<td>Turbidity</td>
</tr>
<tr>
<td>Kontropeuse. Nopeus jossa vesi kiertää akvaarioissa tai akvaarion ja ala-altaan välillä. Riutta-akaarilesai suositellaan suurta kertoneopeutta.</td>
</tr>
<tr>
<td>Twintail</td>
</tr>
<tr>
<td>Kala jolla on kaksoispyrstö.</td>
</tr>
</tbody>
</table>

U

<p>| Ultraviolet (UV) Sterilizer |
| Ultraviolett sterioloimislaite (UV). Laite joka steriliisoi veden joka kulkee ultraviolettivalon ympärillä olevassa lasiputken läpi. Laite auttaa poistamaan bakteereita, loisia ja leväitiöitä akvaariovedestä. Laite ei sovi riutta-akaarioihin koska se poistaa myös riutan toiminnalle hyödyllistä eliöstöä ja bakteereita.** |
| Umarakko |
| Kaasua täynnä oleva pusi joka sijaitsee kalan vatsaon pohjassa. |
| Under Gravel Filter |
| Hieman suodatin. Suodatinlaatta joka on asennettu akvaarioon rinnalla olevan hieran alle. Sen tarkoitus on edistää hyvien bakteereiden kasvua jotka hoitavat biologisen suodatuksesta. |
| Ulkoinen |
| Loinen jota elää ruumiin pinnalla. |
| Unicellular |
| Yksisoluinen |
| Ulkosuodatin |
| Suodatusjärjestelmä jossa on akvaario ulkopuolinen kanisteri joka sisältää erilaisia mekaanisia suodatusvälineitä. Vesi pumpataan akvaariosta suodattimeen pakottaen sen läpi ja sitten palautetaan takaisin akvaarioon. |
| Ultraviolet sterioloimislaite (UV) |
| Laite joka steriliisoi veden joka kulkee ultraviolettivalon ympärillä olevassa lasiputken läpi. Laite auttaa poistamaan bakteereita, loisia ja leväitiöitä akvaariovedestä. Laite ei sovi riutta-akaarioihin koska se poistaa myös riutan toiminnalle hyödyllistä eliöstöä ja bakteereita. |
| Sanastoa |
|-----------------|-----------------|
| Uppovaaka (hydrometri) | Laite jolla mitataan veden tyytystä tai ominaispainoa. Olemassa on vedessä kelluvaa tyyppiä ja viisarimalli. |
| V,W | |
| Variety | Vaalholla erottelu | Biologinen suodatustapa jolla poistetaan valkuaisainetta vedestä vaahdon avulla. Tätä suodatustapaa käytetään valkuaisainevaahdottimissa. |
| Vent | Valkuisainevaahdotin | Ulkoinen suodatuslaite joka käyttää kuplia poistamaan tyypirikkeitä valkuaisaineita, rasvahappoja ja muita organisia jätteitä. |
| Peräauukko | Värilaji | Johonkin kalalajiin kuuluva yksilö jolla on näkyviä muutoksia värissä, evien muodossa tai kasvussa, jne. |
| Ventral | Vaahdolla erottelu | Biologinen suodatustapa jolla poistetaan valkuaisainetta vedestä vaahdon avulla. Tätä suodatustapaa käytetään valkuaisainevaahdottimissa. |
| Kalan mahapuoli | Biologinen suodattuvarsi | Suodatustapa jossa vettä tihumattomalla välein jossa on aikaa ilman kanssa. Ilma auttaa edistämään ammoniakki- tai nitritityyppisiä tai nitraattityyppisiä. Suodatinväline tavoittelee lisäämään pieniä muuvipalloja tai muovisikaileita. Valonvälineä tosin ei enää käytetä juurikaan riutta-akvaarioissa. |
| Venturi | Venturi | Erikoistyyppinen venttiili joka tuottaa ilmakuippua vetämällä ilmaa paineen alaiseen vedenvirtaukseen. Venturi-venttiileitä käytetään erilaisissa valkuaisainevaahdottimissa. |
| Valojakso | Vahvasti suodatettu | Aika jonka akvaarioin valot ovat päällä. |
| Varsaa suodatin | Suodattuvarsi | Suodatustapa jossa vettä tihumattomalla välein jossa on aikaa ilman kanssa. Ilma auttaa edistämään ammoniakki- tai nitritityyppisiä tai nitraattityyppisiä. Suodatinväline tavoittelee lisäämään pieniä muuvipalloja tai muovisikaileita. Valonvälineä tosin ei enää käytetä juurikaan riutta-akvaarioissa. |
| Ventral Fins | Venturi | Erikoistyyppinen venttiili joka tuottaa ilmakuippua vetämällä ilmaa paineen alaiseen vedenvirtaukseen. Venturi-venttiileitä käytetään erilaisissa valkuaisainevaahdottimissa. |
| Vatsaevä. Evät jotka sijaitsevat jalkaan perävaan edessä ja kalan vatsapuolella. | Vastavirsatuu | Prossersa jossa pumpataan vettä akvaarioon pohjalle olevan hiekan alla. |
| VHO Lights | Vastavirsatuu | Prossersa jossa pumpataan vettä akvaarioon pohjalle olevan hiekan alla. |
| Viviparous | Vatsaevä | Evät jotka sijaitsevat jalkaan perävaan edessä ja kalan vatsapuolella. |
| Eläviä poikasia synnyttävä kala. | Vatsaevä | Evät tai evät jotka sijaitsevat jalkaan perävaan edessä ja kalan vatsapuolella. |
| Water Change | Water Change | Veden vaihto. Toiminto jossa vaihdetaan osa akvaarioon vedestä tuoreeseella suolavedellä. |
| Veden vaihto. Toiminto jossa vaihdetaan osa akvaarioon vedestä tuoreeseella suolavedellä. | Water Change | Veden vaihto. Toiminto jossa vaihdetaan osa akvaarioon vedestä tuoreeseella suolavedellä. Katso sivu 87 |
| Markkavaikusuodatin. Biologinen suodatustapa jolla poistetaan valkuaisainetta vedestä vaahdon avulla. Tätä suodatustapaa käytetään valkuaisainevaahdottimissa. Markkavaikusuodatin | Water Turnover | Veden virtausnopeus litraa/tunnissa. |
| Wet/dry Filter | Water Turnover | Veden virtausnopeus litraa/tunnissa. |</p>
<table>
<thead>
<tr>
<th>Sanastoa</th>
<th>seen vedenvirtaukseen. Venturiventtiileitä käytetään valkuaisainevaahdottimissa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viljelty (kalat)</td>
<td>Akvaariossa kehitetty lajike tai muunnos kalasta. Näitä ei löydy luonnosta.</td>
</tr>
<tr>
<td>Y</td>
<td>Yhteyttäminen Prosessi jossa kasvit (riutta-akvaarioissa levät ja korallien symbioottiset levät) käyttävät valoa ja hiilidioksidia tuottamaan rypälesokeria ruoakseen.</td>
</tr>
</tbody>
</table>
| **Ylikyllästyminen** Aineen liukeneminen nesteeseen siten, että liukenemista tapahtuu enemmän kuin normaaleissa olosuhteissa eli erikoisessa lämpötilassa olevissa aineissa ja hiilidioksidissa.

| **Z** | **Zooplankton** Eläinplankton. Erittäin pientä eläintä joka leijuu vedessä. |
| **Zooksantelli** (Zooxanthellae) | **Zooksantelli** Symbioottilevä. Hyvin pienet levät jotka elävät symbioosissa joidenkin korallien, simpukoiden ja myös joidenkin sienien kanssa. Ne saavat ravintoaineita isännältään ja toimivat vastavuoroisesti ravintolähteenä sille. Zooksantellit antavat koralleille ja simpukoille niiden kirkkaan vihreään, keltaiseen ja siniseen väärin. |
Lyhenteitä englannista

Kun vieraille englanninkielisillä keskustelupaikoilla, tulee vastaan suuri määrä lyhenteitä, jotka ovat erityisesti aloittelijalle pelkkää hepreaa. Alla on listattu yleisimpiä niistä ja fraaseja, joita usein näkyy käytettävän.

<table>
<thead>
<tr>
<th>Lyhente</th>
<th>Kieliäinen käännös</th>
</tr>
</thead>
<tbody>
<tr>
<td>:D</td>
<td>Big Grin</td>
</tr>
<tr>
<td>AC</td>
<td>Activated carbon or alternating current</td>
</tr>
<tr>
<td>AFAIK</td>
<td>As Far As I Know</td>
</tr>
<tr>
<td>AFM</td>
<td>Aquarium Fish Monthly, magazine</td>
</tr>
<tr>
<td>Alk</td>
<td>Alkalinity</td>
</tr>
<tr>
<td>BB</td>
<td>Bulletin Board</td>
</tr>
<tr>
<td>bbl</td>
<td>Be Back Later</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological oxygen demand</td>
</tr>
<tr>
<td>brb</td>
<td>Be Right Back</td>
</tr>
<tr>
<td>BTW</td>
<td>By The Way</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>Ca(OH)2</td>
<td>Calcium hydroxide</td>
</tr>
<tr>
<td>Ca(OH)2</td>
<td>Limewater (kalkwasser)</td>
</tr>
<tr>
<td>CaCl2</td>
<td>Calcium chloride</td>
</tr>
<tr>
<td>CaCO3</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>CC</td>
<td>Counter current, type of protein skimmer</td>
</tr>
<tr>
<td>Cl</td>
<td>Chlorine</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CO3</td>
<td>Carbonate</td>
</tr>
<tr>
<td>CTA</td>
<td>Cellulose triacetate, type of RO membrane</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>Cyano</td>
<td>Cyanobacteria</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DD</td>
<td>Downdraft, type of protein skimmer</td>
</tr>
<tr>
<td>DI</td>
<td>Deionisation, type of water purification</td>
</tr>
<tr>
<td>DIY</td>
<td>Do it yourself</td>
</tr>
<tr>
<td>dKH</td>
<td>Degrees of carbonate hardness, measure of alkalinity</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolve oxygen</td>
</tr>
<tr>
<td>DOC</td>
<td>Dissolved organic carbon</td>
</tr>
<tr>
<td>DSB</td>
<td>Deep Sand Bed</td>
</tr>
<tr>
<td>FAMA</td>
<td>Freshwater and Marine Aquaria, magazine</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>FFE</td>
<td>Flying Fish Express, Mail Order Company</td>
</tr>
<tr>
<td>FO</td>
<td>Fish only</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>FOWLR</td>
<td>Fish Only With Live Rock (Aquarium)</td>
</tr>
<tr>
<td>FW</td>
<td>Freshwater</td>
</tr>
<tr>
<td>FWIW</td>
<td>For What Its Worth</td>
</tr>
<tr>
<td>FYI</td>
<td>For Your Information</td>
</tr>
<tr>
<td>GBR</td>
<td>Great Barrier Reef</td>
</tr>
<tr>
<td>GPH</td>
<td>Gallons per hour</td>
</tr>
<tr>
<td>HCO3</td>
<td>Hydrogen carbonate</td>
</tr>
<tr>
<td>HO</td>
<td>High output fluorescent light</td>
</tr>
<tr>
<td>HTH</td>
<td>Hope That Helps</td>
</tr>
<tr>
<td>I</td>
<td>Iodide</td>
</tr>
<tr>
<td>I2</td>
<td>Iodine</td>
</tr>
<tr>
<td>IIRC</td>
<td>If I Recall Correctly</td>
</tr>
<tr>
<td>IME</td>
<td>In My Experience</td>
</tr>
<tr>
<td>IMHO</td>
<td>In My Humble Opinion</td>
</tr>
<tr>
<td>IMO</td>
<td>In My Opinion</td>
</tr>
<tr>
<td>IO3</td>
<td>Iodate</td>
</tr>
<tr>
<td>IOW</td>
<td>In Other Words</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IRC</td>
<td>Internet Relay Chat</td>
</tr>
<tr>
<td>JMO</td>
<td>Just My Opinion</td>
</tr>
<tr>
<td>k</td>
<td>OK</td>
</tr>
<tr>
<td>Kalk</td>
<td>Kalkwasser, calcium hydroxide solution</td>
</tr>
<tr>
<td>KI</td>
<td>Potassium iodide</td>
</tr>
<tr>
<td>LFS</td>
<td>Local fish store</td>
</tr>
<tr>
<td>LHS</td>
<td>Local hardware store</td>
</tr>
<tr>
<td>LOL</td>
<td>Lots Of Laughs or Laughing Out Loud</td>
</tr>
<tr>
<td>LPS</td>
<td>Large polyped Scleractinian (stoney) coral</td>
</tr>
<tr>
<td>LR</td>
<td>Live rock</td>
</tr>
<tr>
<td>LS</td>
<td>Live Sand</td>
</tr>
<tr>
<td>MACNA</td>
<td>Marine Aquaria Conference of North America</td>
</tr>
<tr>
<td>MEQ/L</td>
<td>Milli-equivalents per litre, measure of alkalinity</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>MH</td>
<td>Metal halide light</td>
</tr>
<tr>
<td>MO</td>
<td>Mail order</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NaCO3</td>
<td>Sodium carbonate</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NH3</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NH4</td>
<td>Ammonium</td>
</tr>
<tr>
<td>NO</td>
<td>Normal output fluorescent light</td>
</tr>
<tr>
<td>NO2</td>
<td>Nitrite</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>NO3</td>
<td>Nitrate</td>
</tr>
<tr>
<td>np</td>
<td>No Problem</td>
</tr>
<tr>
<td>NSW</td>
<td>Natural seawater</td>
</tr>
<tr>
<td>O2</td>
<td>Oxygen</td>
</tr>
<tr>
<td>ORP</td>
<td>Oxidative redox potential</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically Available Radiation (useful light to the coral)</td>
</tr>
<tr>
<td>PC</td>
<td>Power compact fluorescent light</td>
</tr>
<tr>
<td>pH</td>
<td>A measure of the acidity or alkalinity of a solution</td>
</tr>
<tr>
<td>PH</td>
<td>Powerhead, water pump</td>
</tr>
<tr>
<td>PITA</td>
<td>Pain In The Ass (Arse)</td>
</tr>
<tr>
<td>PO4</td>
<td>Phosphate</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts per million, equivalent to mg/l</td>
</tr>
<tr>
<td>prolly</td>
<td>Probably</td>
</tr>
<tr>
<td>PVC</td>
<td>Poly vinyl chloride, used for piping / plumbing</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse osmosis, type of water purification</td>
</tr>
<tr>
<td>RO/DI</td>
<td>Reverse osmosis, followed by deionisation, water purification</td>
</tr>
<tr>
<td>ROFL</td>
<td>Rolling On the Floor Laughing</td>
</tr>
<tr>
<td>ROFLMAO</td>
<td>Rolling On the Floor Laughing My Ass (arse) Off</td>
</tr>
<tr>
<td>SG</td>
<td>Specific Gravity (Salinity)</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>SiO2</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>SPS</td>
<td>Small polyped Scleractinian (stoney) coral</td>
</tr>
<tr>
<td>Sr</td>
<td>Strontium</td>
</tr>
<tr>
<td>SW</td>
<td>Saltwater / seawater</td>
</tr>
<tr>
<td>TBS</td>
<td>Tampa Bay Saltwater, Mail Order Company</td>
</tr>
<tr>
<td>TFC</td>
<td>Thin film composite, type of RO membrane</td>
</tr>
<tr>
<td>TIA</td>
<td>Thanks In Advance</td>
</tr>
<tr>
<td>TTYL</td>
<td>Talk To You Later</td>
</tr>
<tr>
<td>TWP</td>
<td>Tap Water Purifier from Aquatic Pharmaceuticals</td>
</tr>
<tr>
<td>UGF</td>
<td>Undergravel filter</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet light</td>
</tr>
<tr>
<td>VHO</td>
<td>Very High Output (1500 mA) fluorescent tube</td>
</tr>
</tbody>
</table>
Tiedonkeräystaulukko

<table>
<thead>
<tr>
<th>Vuosi 20...</th>
<th>Vedenvaihto Päivä/litraa</th>
<th>Kalsiumhyd. lisäys Päivä/määrä</th>
<th>Kalsium Ca Päivä/ppm</th>
<th>KH Päivä/dKH tai meq/L</th>
<th>pH Päivä/arvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tammikuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helmikuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maaliskuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huhtikuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toukokuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kesäkuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heinäkuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elokuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syyskuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lokakuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marraskuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joulukuu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarkistukset & toimet

<table>
<thead>
<tr>
<th>Hiili/vaihto</th>
<th>Lämpomittari/anturi</th>
<th>Osmolaattori/anturi</th>
<th>pH mittari/anturin</th>
<th>pH mittari/kalibrointi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarkistukset & toimet</td>
<td>Lämpomittari/anturi</td>
<td>Osmolaattori/anturi</td>
<td>pH mittari/anturin</td>
<td>pH mittari/kalibrointi</td>
</tr>
<tr>
<td></td>
<td>Co2 pullon täytö</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pumpu 1/puhdistus</td>
<td>Pumpu 2/puhdistus</td>
<td>Pumpu 3/puhdistus</td>
<td>Pumpu 4/puhdistus</td>
</tr>
<tr>
<td></td>
<td>Pumpu 5/puhdistus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vaahdotin 1/puhdistus</td>
<td>Vaahdotin 2/puhdistus</td>
<td>Kalkkireaktorin täyttö</td>
<td></td>
</tr>
</tbody>
</table>

Vesitestit

<table>
<thead>
<tr>
<th>Nitritti NO2</th>
<th>Nitraatti NO3</th>
<th>Boori B</th>
<th>Magnesium Mg</th>
<th>Jodi I2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfaatti PO4</td>
<td>Strontium Sr</td>
<td>Silikaatti Si</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tiedonkeräystaulukko
Viitteet

Loppuviitteet:
1 Nilsen & Fosså – The Modern Coral Reef Aquarium vol.1: Sivut 127-158
2 Nilsen & Fosså – Reef Secrets: Sivu 47
3 Ron Shimek – The Coral Reef Aquarium: Sivu 41
4 Nilsen & Fosså – Reef Secrets: Sivu 87
6 Nilsen & Fosså – Reef Secrets: Sivu 25
7 Nilsen & Fosså – The Modern Coral Reef Aquarium vol.1: Sivu 198
8 Nilsen & Fosså – The Modern Coral Reef Aquarium vol.1: Sivu 199, taulukko 6
9 Nilsen & Fosså – The Modern Coral Reef Aquarium vol.1: Sivu 259
10 Nilsen & Fosså – The Modern Coral Reef Aquarium vol.1: Sivu 218
11 Ron Shimek – The Coral Reef Aquarium: sivu 68
13 Nilsen & Fosså – Reef Secrets: Sivu 40
14 Randy Holmes-Farley – Tap water in reef Aquarium: www.advancedaquarist.com/issues/jan2004/chem.htm
19 Randy Holmes-Farley – Alkalinity: www.advancedaquarist.com/issues/feb2002/chemistry.htm
21 Randy Holmes-Farley – Solving Calcium and Alkalinity Problems: www.advancedaquarist.com/issues/nov2002/chem.htm
22 Randy Holmes-Farley – Magnesium in Reef Aquarium: www.advancedaquarist.com/issues/oct2003/chem.htm
24 Randy Holmes-Farley – Measuring pH with a Meter: www.advancedaquarist.com/issues/feb2004/chem.htm
27 Nilsen & Fosså – The Modern Coral Reef Aquarium vol.1: Sivu 264